示例#1
0
    def run(self) -> None:
        """
        Run method of the module. Smooths the images with a Gaussian
        kernel, locates the brightest pixel in each image, measures the
        integrated flux around the brightest pixel, calculates the
        median and standard deviation of the photometry, and applies
        sigma clipping to remove low quality images.

        Returns
        -------
        NoneType
            None
        """

        pixscale = self.m_image_in_port.get_attribute('PIXSCALE')
        nimages = self.m_image_in_port.get_shape()[0]

        if self.m_fwhm is not None:
            self.m_fwhm = int(math.ceil(self.m_fwhm / pixscale))

        if self.m_position is not None and self.m_position[2] is not None:
            self.m_position = (self.m_position[0], self.m_position[0],
                               int(math.ceil(self.m_position[2] / pixscale)))

        if len(self.m_aperture) == 2:
            self.m_aperture = (self.m_aperture[0], None,
                               self.m_aperture[1] / pixscale)

        elif len(self.m_aperture) == 3:
            self.m_aperture = (self.m_aperture[0],
                               self.m_aperture[1] / pixscale,
                               self.m_aperture[2] / pixscale)

        starpos = star_positions(self.m_image_in_port, self.m_fwhm,
                                 self.m_position)

        phot = np.zeros(nimages)
        start_time = time.time()

        for i in range(nimages):
            progress(i, nimages, 'Aperture photometry...', start_time)

            phot[i] = self.aperture_phot(self.m_image_in_port[i, ],
                                         starpos[i, :], self.m_aperture)

        if self.m_method == 'median':
            phot_ref = np.nanmedian(phot)
            print(f'Median = {phot_ref:.2f}')

        elif self.m_method == 'max':
            phot_ref = np.nanmax(phot)
            print(f'Maximum = {phot_ref:.2f}')

        elif self.m_method == 'range':
            phot_ref = np.nanmedian(phot)
            print(f'Median = {phot_ref:.2f}')

        phot_std = np.nanstd(phot)
        print(f'Standard deviation = {phot_std:.2f}')

        if self.m_method in ['median', 'max']:
            index_del = np.logical_or(
                (phot > phot_ref + self.m_threshold * phot_std),
                (phot < phot_ref - self.m_threshold * phot_std))

        elif self.m_method == 'range':
            index_del = np.logical_or((phot < self.m_threshold[0]),
                                      (phot > self.m_threshold[1]))

        index_del[np.isnan(phot)] = True
        index_del = np.where(index_del)[0]

        index_sel = np.ones(nimages, dtype=bool)
        index_sel[index_del] = False

        write_selected_data(memory=self._m_config_port.get_attribute('MEMORY'),
                            indices=index_del,
                            image_in_port=self.m_image_in_port,
                            selected_out_port=self.m_selected_out_port,
                            removed_out_port=self.m_removed_out_port)

        history = f'frames removed = {np.size(index_del)}'

        if self.m_index_out_port is not None:
            self.m_index_out_port.set_all(index_del, data_dim=1)
            self.m_index_out_port.copy_attributes(self.m_image_in_port)
            self.m_index_out_port.add_attribute('STAR_POSITION',
                                                starpos,
                                                static=False)
            self.m_index_out_port.add_history('FrameSelectionModule', history)

        write_selected_attributes(indices=index_del,
                                  image_in_port=self.m_image_in_port,
                                  selected_out_port=self.m_selected_out_port,
                                  removed_out_port=self.m_removed_out_port,
                                  module_type='FrameSelectionModule',
                                  history=history)

        self.m_selected_out_port.add_attribute('STAR_POSITION',
                                               starpos[index_sel],
                                               static=False)
        self.m_selected_out_port.add_history('FrameSelectionModule', history)

        self.m_removed_out_port.add_attribute('STAR_POSITION',
                                              starpos[index_del],
                                              static=False)
        self.m_removed_out_port.add_history('FrameSelectionModule', history)

        self.m_image_in_port.close_port()
示例#2
0
    def run(self) -> None:
        """
        Run method of the module. Smooths the images with a Gaussian kernel, locates the brightest
        pixel in each image, measures the integrated flux around the brightest pixel, calculates
        the median and standard deviation of the photometry, and applies sigma clipping to remove
        low quality images.

        Returns
        -------
        NoneType
            None
        """

        self.m_selected_out_port.del_all_data()
        self.m_selected_out_port.del_all_attributes()

        self.m_removed_out_port.del_all_data()
        self.m_removed_out_port.del_all_attributes()

        if self.m_index_out_port is not None:
            self.m_index_out_port.del_all_data()
            self.m_index_out_port.del_all_attributes()

        pixscale = self.m_image_in_port.get_attribute('PIXSCALE')
        nimages = self.m_image_in_port.get_shape()[0]

        self.m_fwhm = int(math.ceil(self.m_fwhm / pixscale))

        if self.m_position is not None and self.m_position[2] is not None:
            self.m_position = (self.m_position[0], self.m_position[0],
                               int(math.ceil(self.m_position[2] / pixscale)))

        if len(self.m_aperture) == 2:
            self.m_aperture = (self.m_aperture[0], None,
                               self.m_aperture[1] / pixscale)

        elif len(self.m_aperture) == 3:
            self.m_aperture = (self.m_aperture[0],
                               self.m_aperture[1] / pixscale,
                               self.m_aperture[2] / pixscale)

        starpos = star_positions(self.m_image_in_port, self.m_fwhm,
                                 self.m_position)

        phot = np.zeros(nimages)
        start_time = time.time()

        for i in range(nimages):
            progress(i, nimages, 'Aperture photometry...', start_time)

            phot[i] = self.photometry(self.m_image_in_port[i, ], starpos[i, :],
                                      self.m_aperture)

        if self.m_method == 'median':
            phot_ref = np.nanmedian(phot)
            print(f'Median = {phot_ref:.2f}')

        elif self.m_method == 'max':
            phot_ref = np.nanmax(phot)
            print(f'Maximum = {phot_ref:.2f}')

        phot_std = np.nanstd(phot)
        print(f'Standard deviation = {phot_std:.2f}')

        index_rm = np.logical_or(
            (phot > phot_ref + self.m_threshold * phot_std),
            (phot < phot_ref - self.m_threshold * phot_std))

        index_rm[np.isnan(phot)] = True
        indices = np.asarray(np.where(index_rm)[0], dtype=np.int)

        if np.size(indices) > 0:
            memory = self._m_config_port.get_attribute('MEMORY')
            frames = memory_frames(memory, nimages)

            if memory == 0 or memory >= nimages:
                memory = nimages

            start_time = time.time()

            for i, _ in enumerate(frames[:-1]):
                progress(i, len(frames[:-1]), 'Writing selected data...',
                         start_time)

                index_del = np.where(
                    np.logical_and(indices >= frames[i],
                                   indices < frames[i + 1]))

                write_selected_data(
                    images=self.m_image_in_port[frames[i]:frames[i + 1], ],
                    indices=indices[index_del] % memory,
                    port_selected=self.m_selected_out_port,
                    port_removed=self.m_removed_out_port)

        else:
            warnings.warn('No frames were removed.')

        history = f'frames removed = {np.size(indices)}'

        if self.m_index_out_port is not None:
            self.m_index_out_port.set_all(np.transpose(indices))
            self.m_index_out_port.copy_attributes(self.m_image_in_port)
            self.m_index_out_port.add_attribute('STAR_POSITION',
                                                starpos,
                                                static=False)
            self.m_index_out_port.add_history('FrameSelectionModule', history)

        # Copy attributes before write_selected_attributes is used
        self.m_selected_out_port.copy_attributes(self.m_image_in_port)

        # Copy attributes before write_selected_attributes is used
        self.m_removed_out_port.copy_attributes(self.m_image_in_port)

        write_selected_attributes(indices, self.m_image_in_port,
                                  self.m_selected_out_port,
                                  self.m_removed_out_port)

        indices_select = np.ones(nimages, dtype=bool)
        indices_select[indices] = False
        indices_select = np.where(indices_select)

        self.m_selected_out_port.add_attribute('STAR_POSITION',
                                               starpos[indices_select],
                                               static=False)

        self.m_selected_out_port.add_history('FrameSelectionModule', history)

        self.m_removed_out_port.add_attribute('STAR_POSITION',
                                              starpos[indices],
                                              static=False)

        self.m_removed_out_port.add_history('FrameSelectionModule', history)

        self.m_image_in_port.close_port()