示例#1
0
def _create_collection(analysis, force=False):
    collection_name = analysis.name
    if force is True:
        timestamp = datetime.datetime.utcnow().strftime('%Y-%m-%d_%H:%M')
        collection_name += f"_{timestamp}"
    url = f"https://{current_app.config['SERVER_NAME']}"\
          f"/builder/{analysis.hash_id}"
    try:
        api = Client(
            access_token=current_app.config['NEUROVAULT_ACCESS_TOKEN'])
        collection = api.create_collection(collection_name,
                                           description=analysis.description,
                                           full_dataset_url=url)
    except Exception:
        abort(
            422, "Error creating collection, "
            "perhaps one with that name already exists?")

    # Create new NV collection
    upload = NeurovaultCollection(
        analysis_id=analysis.hash_id,
        collection_id=collection['id'],
    )
    db.session.add(upload)
    db.session.commit()

    upload_dir = Path(current_app.config['FILE_DIR']) / 'uploads' / str(
        collection['id'])
    upload_dir.mkdir(exist_ok=True)

    return upload
示例#2
0
def get_collection_image_metadata(collection=None, data_dir=None, limit=10):
    ''' Get image metadata associated with collection

	Args:
		collection:  (int) collection id
		data_dir:	(str) data directory
		limit:		(int) number of images to increment

	Returns:
		metadata:	(pd.DataFrame) Dataframe with full image metadata from
					collection

	'''

    if os.path.isfile(os.path.join(data_dir, 'metadata.csv')):
        dat = pd.read_csv(os.path.join(data_dir, 'metadata.csv'))
    else:
        offset = 0
        api = Client()
        i = api.get_collection_images(collection_id=collection,
                                      limit=limit,
                                      offset=offset)
        dat = pd.DataFrame(columns=i['results'][0].keys())
        while int(offset) < int(i['count']):
            for x in i['results']:
                dat = dat.append(x, ignore_index=True)
            offset = offset + limit
            i = api.get_collection_images(collection_id=collection,
                                          limit=limit,
                                          offset=offset)
        dat.to_csv(os.path.join(data_dir, 'metadata.csv'), index=False)
    return dat
示例#3
0
def get_collection_image_metadata(collection=None, data_dir=None, limit=10):
    """
    Get image metadata associated with collection

    Args:
        collection (int, optional): collection id. Defaults to None.
        data_dir (str, optional): data directory. Defaults to None.
        limit (int, optional): number of images to increment. Defaults to 10.

    Returns:
        pd.DataFrame: Dataframe with full image metadata from collection
    """

    if os.path.isfile(os.path.join(data_dir, "metadata.csv")):
        dat = pd.read_csv(os.path.join(data_dir, "metadata.csv"))
    else:
        offset = 0
        api = Client()
        i = api.get_collection_images(collection_id=collection,
                                      limit=limit,
                                      offset=offset)
        dat = pd.DataFrame(columns=i["results"][0].keys())
        while int(offset) < int(i["count"]):
            for x in i["results"]:
                dat = dat.append(x, ignore_index=True)
            offset = offset + limit
            i = api.get_collection_images(collection_id=collection,
                                          limit=limit,
                                          offset=offset)
        dat.to_csv(os.path.join(data_dir, "metadata.csv"), index=False)
    return dat
示例#4
0
文件: upload.py 项目: effigies/BLiMP
def upload_neurovault(flask_app,
                      img_tarball,
                      hash_id,
                      upload_id,
                      timestamp=None,
                      n_subjects=None):
    """ Upload results to NeuroVault
    Args:
        img_tarball (str): tarball path containg images
        hash_id (str): Analysis hash_id
        upload_id (int): NeurovaultCollection object id
        timestamp (str): Current server timestamp
        n_subjects (int): Number of subjects in analysis
    """
    upload_object = NeurovaultCollection.query.filter_by(id=upload_id).one()
    timestamp = "_" + timestamp if timestamp is not None else ''
    api = Client(access_token=flask_app.config['NEUROVAULT_ACCESS_TOKEN'])

    try:
        # Untar:
        tmp_dir = Path(mkdtemp())
        with tarfile.open(img_tarball, mode="r:gz") as tf:
            tf.extractall(tmp_dir)
    except Exception as e:
        update_record(upload_object,
                      exception=e,
                      traceback='Error decompressing image bundle')
        raise

    try:
        collection = api.create_collection('{}{}'.format(hash_id, timestamp))

        for img_path in tmp_dir.glob('*stat-t_statmap.nii.gz'):
            contrast_name = re.findall('contrast-(.*)_', str(img_path))[0]
            api.add_image(collection['id'],
                          img_path,
                          name=contrast_name,
                          modality="fMRI-BOLD",
                          map_type='T',
                          analysis_level='G',
                          cognitive_paradigm_cogatlas='None',
                          number_of_subjects=n_subjects,
                          is_valid=True)
    except Exception as e:
        update_record(upload_object,
                      exception=e,
                      traceback='Error uploading, perhaps a \
                collection with the same name exists?')
        raise

    return update_record(upload_object,
                         collection_id=collection['id'],
                         status='OK')
示例#5
0
def upload_neurovault(flask_app, file_id, n_subjects=None):
    """ Upload image file to NeuroVault
    Args:
        file_id (int): NeurovaultFileUpload object id
        n_subjects (int): Number of subjects in analysis
    """
    api = Client(access_token=flask_app.config['NEUROVAULT_ACCESS_TOKEN'])
    file_object = NeurovaultFileUpload.query.filter_by(id=file_id).one()
    basename = Path(file_object.path).parts[-1]

    contrast_name = re.findall('contrast-(.*)_', str(basename))[0]
    map_type = re.findall('stat-(.*)_', str(basename))[0]
    map_type = MAP_TYPE_CHOICES[map_type]

    if file_object.level == 'GROUP':
        analysis_level = 'G'
    else:
        analysis_level = 'S'
        n_subjects = None

    try:
        api.add_image(file_object.collection.collection_id,
                      file_object.path,
                      name=contrast_name,
                      modality="fMRI-BOLD",
                      map_type=map_type,
                      analysis_level=analysis_level,
                      cognitive_paradigm_cogatlas='None',
                      number_of_subjects=n_subjects,
                      is_valid=True)
    except Exception as e:
        update_record(file_object,
                      exception=e,
                      traceback='Error adding image to collection')
        raise

    return update_record(file_object, status='OK')
示例#6
0
"""
create neurovault collection with results
"""

import os
import glob
from pynv import Client

assert 'NEUROVAULT_API_KEY' in os.environ
access_token = os.environ['NEUROVAULT_API_KEY']

assert 'NARPS_BASEDIR' in os.environ
basedir = os.environ['NARPS_BASEDIR']
output_dir = os.path.join(basedir, 'output')

api = Client(access_token=access_token)

# tuple contains directory name and wildcard
imagesets = {
    'overlap':
    ('overlap_binarized_thresh', 'hypo*.nii.gz', 'Other',
     'NARPS Study: Overlap maps, showing roportion of teams with significant activity at any voxel (Figure 1)'
     ),  # noqa
    'clustermaps':
    ('cluster_maps', 'hyp*_cluster*_mean.nii.gz', 'Other',
     'NARPS Study: Cluster maps, showing mean Z statistic across teams for each hypothesis/cluster (Figure 2, Supplementary Figures 2-7)'
     ),  # noqa
    'CBMA':
    ('ALE', 'hypo*_fdr_oneminusp.nii.gz', 'Other',
     'NARPS Study: Coordinate-based meta-analysis results (1 - P after FDR correction) (Supplementary Figure 1)'
     ),  # noqa
示例#7
0
from pynv import Client

api=Client(access_token='uctb6zhxK6BUY4JgPZZzGZK22tk2zxbX8U5QLNSl')

collection=api.create_collection('Gender')

image_file_path='D:/FaceData/func_img/wrarun1.nii'

image=api.add_image(
    collection['9850'],
    image_file_path,
    name='Gender',
    modality='fMRI_BOLD',
    map_type='Other'
)

示例#8
0
文件: conftest.py 项目: ngohgia/pynv
def client():
    return Client(access_token=ACCESS_TOKEN)
示例#9
0
文件: conftest.py 项目: ngohgia/pynv
def anonymous_client():
    return Client()