def cof(X): contamination_factor = 0.1 k = 20 clf = COF(contamination=contamination_factor, n_neighbors=k) clf.fit(X) label = clf.labels_ score = clf.decision_scores_ threshold = clf.threshold_ writeLabel(label) return
def test_check_parameters(self): with assert_raises(ValueError): COF(contamination=0.1, n_neighbors=-1) with assert_raises(ValueError): COF(contamination=10., n_neighbors=5) with assert_raises(TypeError): COF(contamination=0.1, n_neighbors='not int') with assert_raises(TypeError): COF(contamination='not float', n_neighbors=5) cof_ = COF(contamination=0.1, n_neighbors=10000) cof_.fit(self.X_train) assert self.X_train.shape[0] > cof_.n_neighbors_
def getOutlierCOF(dataset): ''' @brief Function that executes COF algorithm on the dataset and obtains the labels of the dataset indicating which instance is an inlier (0) or outlier (1) @param dataset Dataset on which to try the algorithm @return It returns a list of labels 0 means inlier, 1 means outlier ''' # Initializating the model cof = COF() # Fits the data and obtains labels cof.fit(dataset) # Return labels return cof.labels_
class TestCOF(unittest.TestCase): def setUp(self): self.n_train = 100 self.n_test = 50 self.contamination = 0.1 self.roc_floor = 0.8 self.X_train, self.y_train, self.X_test, self.y_test = generate_data( n_train=self.n_train, n_test=self.n_test, contamination=self.contamination, random_state=42) self.clf = COF(contamination=self.contamination) self.clf.fit(self.X_train) def test_parameters(self): assert (hasattr(self.clf, 'decision_scores_') and self.clf.decision_scores_ is not None) assert (hasattr(self.clf, 'labels_') and self.clf.labels_ is not None) assert (hasattr(self.clf, 'threshold_') and self.clf.threshold_ is not None) assert (hasattr(self.clf, 'n_neighbors_') and self.clf.n_neighbors_ is not None) def test_train_scores(self): assert_equal(len(self.clf.decision_scores_), self.X_train.shape[0]) def test_prediction_scores(self): pred_scores = self.clf.decision_function(self.X_test) # check score shapes assert_equal(pred_scores.shape[0], self.X_test.shape[0]) # check performance assert_greater(roc_auc_score(self.y_test, pred_scores), self.roc_floor) def test_prediction_labels(self): pred_labels = self.clf.predict(self.X_test) assert_equal(pred_labels.shape, self.y_test.shape) def test_prediction_proba(self): pred_proba = self.clf.predict_proba(self.X_test) assert_greater_equal(pred_proba.min(), 0) assert_less_equal(pred_proba.max(), 1) def test_prediction_proba_linear(self): pred_proba = self.clf.predict_proba(self.X_test, method='linear') assert_greater_equal(pred_proba.min(), 0) assert_less_equal(pred_proba.max(), 1) def test_prediction_proba_unify(self): pred_proba = self.clf.predict_proba(self.X_test, method='unify') assert_greater_equal(pred_proba.min(), 0) assert_less_equal(pred_proba.max(), 1) def test_prediction_proba_parameter(self): with assert_raises(ValueError): self.clf.predict_proba(self.X_test, method='something') def test_fit_predict(self): pred_labels = self.clf.fit_predict(self.X_train) assert_equal(pred_labels.shape, self.y_train.shape) def test_fit_predict_score(self): self.clf.fit_predict_score(self.X_test, self.y_test) self.clf.fit_predict_score(self.X_test, self.y_test, scoring='roc_auc_score') self.clf.fit_predict_score(self.X_test, self.y_test, scoring='prc_n_score') with assert_raises(NotImplementedError): self.clf.fit_predict_score(self.X_test, self.y_test, scoring='something') def test_predict_rank(self): pred_scores = self.clf.decision_function(self.X_test) pred_ranks = self.clf._predict_rank(self.X_test) print(pred_ranks) # assert the order is reserved assert_allclose(rankdata(pred_ranks), rankdata(pred_scores), atol=2) assert_array_less(pred_ranks, self.X_train.shape[0] + 1) assert_array_less(-0.1, pred_ranks) def test_predict_rank_normalized(self): pred_socres = self.clf.decision_function(self.X_test) pred_ranks = self.clf._predict_rank(self.X_test, normalized=True) # assert the order is reserved assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=2) assert_array_less(pred_ranks, 1.01) assert_array_less(-0.1, pred_ranks) def test_check_parameters(self): with assert_raises(ValueError): COF(contamination=0.1, n_neighbors=-1) with assert_raises(ValueError): COF(contamination=10., n_neighbors=5) with assert_raises(TypeError): COF(contamination=0.1, n_neighbors='not int') with assert_raises(TypeError): COF(contamination='not float', n_neighbors=5) cof_ = COF(contamination=0.1, n_neighbors=10000) cof_.fit(self.X_train) assert self.X_train.shape[0] > cof_.n_neighbors_ def tearDown(self): pass
contamination = 0.1 # percentage of outliers n_train = 200 # number of training points n_test = 100 # number of testing points # Generate sample data X_train, X_test, y_train, y_test = \ generate_data(n_train=n_train, n_test=n_test, n_features=2, contamination=contamination, random_state=42) # train COF detector clf_name = 'COF' clf = COF(n_neighbors=30) clf.fit(X_train) # get the prediction labels and outlier scores of the training data y_train_pred = clf.labels_ # binary labels (0: inliers, 1: outliers) y_train_scores = clf.decision_scores_ # raw outlier scores # get the prediction on the test data y_test_pred = clf.predict(X_test) # outlier labels (0 or 1) y_test_scores = clf.decision_function(X_test) # outlier scores # evaluate and print the results print("\nOn Training Data:") evaluate_print(clf_name, y_train, y_train_scores) print("\nOn Test Data:") evaluate_print(clf_name, y_test, y_test_scores)