def add_affine_cuts(nlp_result, solve_data, config): with time_code(solve_data.timing, "affine cut generation"): m = solve_data.linear_GDP if config.calc_disjunctive_bounds: with time_code(solve_data.timing, "disjunctive variable bounding"): TransformationFactory( 'contrib.compute_disj_var_bounds').apply_to( m, solver=config.mip_solver if config.obbt_disjunctive_bounds else None) config.logger.info("Adding affine cuts.") GDPopt = m.GDPopt_utils counter = 0 for var, val in zip(GDPopt.variable_list, nlp_result.var_values): if val is not None and not var.fixed: var.value = val for constr in constraints_in_True_disjuncts(m, config): # Note: this includes constraints that are deactivated in the current model (linear_GDP) disjunctive_var_bounds = disjunctive_bounds(constr.parent_block()) if constr.body.polynomial_degree() in (1, 0): continue vars_in_constr = list(identify_variables(constr.body)) if any(var.value is None for var in vars_in_constr): continue # a variable has no values # mcpp stuff mc_eqn = mc(constr.body, disjunctive_var_bounds) # mc_eqn = mc(constr.body) ccSlope = mc_eqn.subcc() cvSlope = mc_eqn.subcv() ccStart = mc_eqn.concave() cvStart = mc_eqn.convex() ub_int = min( constr.upper, mc_eqn.upper()) if constr.has_ub() else mc_eqn.upper() lb_int = max( constr.lower, mc_eqn.lower()) if constr.has_lb() else mc_eqn.lower() parent_block = constr.parent_block() # Create a block on which to put outer approximation cuts. aff_utils = parent_block.component('GDPopt_aff') if aff_utils is None: aff_utils = parent_block.GDPopt_aff = Block( doc="Block holding affine constraints") aff_utils.GDPopt_aff_cons = ConstraintList() aff_cuts = aff_utils.GDPopt_aff_cons concave_cut = sum(ccSlope[var] * (var - var.value) for var in vars_in_constr) + ccStart >= lb_int convex_cut = sum(cvSlope[var] * (var - var.value) for var in vars_in_constr) + cvStart <= ub_int aff_cuts.add(expr=concave_cut) aff_cuts.add(expr=convex_cut) counter += 2 config.logger.info("Added %s affine cuts" % counter)
def add_affine_cuts(nlp_result, solve_data, config): with time_code(solve_data.timing, "affine cut generation"): m = solve_data.linear_GDP if config.calc_disjunctive_bounds: with time_code(solve_data.timing, "disjunctive variable bounding"): TransformationFactory('contrib.compute_disj_var_bounds').apply_to( m, solver=config.mip_solver if config.obbt_disjunctive_bounds else None ) config.logger.info("Adding affine cuts.") GDPopt = m.GDPopt_utils counter = 0 for var, val in zip(GDPopt.variable_list, nlp_result.var_values): if val is not None and not var.fixed: var.value = val for constr in constraints_in_True_disjuncts(m, config): # Note: this includes constraints that are deactivated in the current model (linear_GDP) disjunctive_var_bounds = disjunctive_bounds(constr.parent_block()) if constr.body.polynomial_degree() in (1, 0): continue vars_in_constr = list( identify_variables(constr.body)) if any(var.value is None for var in vars_in_constr): continue # a variable has no values # mcpp stuff mc_eqn = mc(constr.body, disjunctive_var_bounds) # mc_eqn = mc(constr.body) ccSlope = mc_eqn.subcc() cvSlope = mc_eqn.subcv() ccStart = mc_eqn.concave() cvStart = mc_eqn.convex() ub_int = min(constr.upper, mc_eqn.upper()) if constr.has_ub() else mc_eqn.upper() lb_int = max(constr.lower, mc_eqn.lower()) if constr.has_lb() else mc_eqn.lower() parent_block = constr.parent_block() # Create a block on which to put outer approximation cuts. aff_utils = parent_block.component('GDPopt_aff') if aff_utils is None: aff_utils = parent_block.GDPopt_aff = Block( doc="Block holding affine constraints") aff_utils.GDPopt_aff_cons = ConstraintList() aff_cuts = aff_utils.GDPopt_aff_cons concave_cut = sum(ccSlope[var] * (var - var.value) for var in vars_in_constr ) + ccStart >= lb_int convex_cut = sum(cvSlope[var] * (var - var.value) for var in vars_in_constr ) + cvStart <= ub_int aff_cuts.add(expr=concave_cut) aff_cuts.add(expr=convex_cut) counter += 2 config.logger.info("Added %s affine cuts" % counter)
def add_affine_cuts(nlp_result, solve_data, config): m = solve_data.linear_GDP config.logger.info("Adding affine cuts.") GDPopt = m.GDPopt_utils for var, val in zip(GDPopt.working_var_list, nlp_result.var_values): if val is not None and not var.fixed: var.value = val for constr in constraints_in_True_disjuncts(m, config): # for constr in GDPopt.working_nonlinear_constraints: if constr not in GDPopt.working_nonlinear_constraints: continue # if constr.body.polynomial_degree() in (1, 0): # continue # TODO check that constraint is on active Disjunct vars_in_constr = list(EXPR.identify_variables(constr.body)) if any(var.value is None for var in vars_in_constr): continue # a variable has no values # mcpp stuff mc_eqn = mc(constr.body) ccSlope = mc_eqn.subcc() cvSlope = mc_eqn.subcv() ccStart = mc_eqn.concave() cvStart = mc_eqn.convex() ub_int = min(constr.upper, mc_eqn.upper()) if constr.has_ub() else mc_eqn.upper() lb_int = max(constr.lower, mc_eqn.lower()) if constr.has_lb() else mc_eqn.lower() parent_block = constr.parent_block() # Create a block on which to put outer approximation cuts. aff_utils = parent_block.component('GDPopt_aff') if aff_utils is None: aff_utils = parent_block.GDPopt_aff = Block( doc="Block holding affine constraints") aff_utils.GDPopt_aff_cons = ConstraintList() aff_cuts = aff_utils.GDPopt_aff_cons concave_cut = sum(ccSlope[var] * (var - var.value) for var in vars_in_constr) + ccStart >= lb_int convex_cut = sum(cvSlope[var] * (var - var.value) for var in vars_in_constr) + cvStart <= ub_int aff_cuts.add(expr=concave_cut) aff_cuts.add(expr=convex_cut)