def test_pressure_drop_model_nlp(self):
        m = self._create_pressure_drop_model()

        cons = [m.c_con, m.F_con, m.Pin_con, m.P2_con]
        inputs = [m.Pin, m.c, m.F]
        outputs = [m.P2, m.Pout]

        nlp = PyomoNLPWithGreyBoxBlocks(m)

        n_primals = len(inputs) + len(outputs)
        n_eq_con = len(cons) + len(outputs)
        self.assertEqual(nlp.n_primals(), n_primals)
        self.assertEqual(nlp.n_constraints(), n_eq_con)

        constraint_names = [
            "c_con",
            "F_con",
            "Pin_con",
            "P2_con",
            "egb.output_constraints[P2]",
            "egb.output_constraints[Pout]",
        ]
        primals = inputs + outputs
        nlp_constraints = nlp.constraint_names()
        nlp_vars = nlp.primals_names()

        con_idx_map = {}
        for name in constraint_names:
            # Quadratic scan to get constraint indices is not ideal.
            # Could this map be created while PyNLPwGBB is being constructed?
            con_idx_map[name] = nlp_constraints.index(name)

        var_idx_map = ComponentMap()
        for var in primals:
            name = var.name
            var_idx_map[var] = nlp_vars.index(name)

        incident_vars = {
            con.name: list(identify_variables(con.expr))
            for con in cons
        }
        incident_vars["egb.output_constraints[P2]"] = inputs + [outputs[0]]
        incident_vars["egb.output_constraints[Pout]"] = inputs + [outputs[1]]

        expected_nonzeros = set()
        for con, varlist in incident_vars.items():
            i = con_idx_map[con]
            for var in varlist:
                j = var_idx_map[var]
                expected_nonzeros.add((i, j))

        self.assertEqual(len(expected_nonzeros), nlp.nnz_jacobian())

        jac = nlp.evaluate_jacobian()
        for i, j in zip(jac.row, jac.col):
            self.assertIn((i, j), expected_nonzeros)
示例#2
0
    def test_compare_evaluations(self):
        A1 = 5
        A2 = 10
        c1 = 3
        c2 = 4
        N = 6
        dt = 1

        m = create_pyomo_model(A1, A2, c1, c2, N, dt)
        solver = pyo.SolverFactory('ipopt')
        solver.options['linear_solver'] = 'mumps'
        status = solver.solve(m, tee=False)
        m_nlp = PyomoNLP(m)

        mex = create_pyomo_external_grey_box_model(A1, A2, c1, c2, N, dt)
        # mex_nlp = PyomoGreyBoxNLP(mex)
        mex_nlp = PyomoNLPWithGreyBoxBlocks(mex)

        # get the variable and constraint order and create the maps
        # reliable order independent comparisons
        m_x_order = m_nlp.primals_names()
        m_c_order = m_nlp.constraint_names()
        mex_x_order = mex_nlp.primals_names()
        mex_c_order = mex_nlp.constraint_names()

        x1list = [
            'h1[0]', 'h1[1]', 'h1[2]', 'h1[3]', 'h1[4]', 'h1[5]', 'h2[0]',
            'h2[1]', 'h2[2]', 'h2[3]', 'h2[4]', 'h2[5]', 'F1[1]', 'F1[2]',
            'F1[3]', 'F1[4]', 'F1[5]', 'F2[1]', 'F2[2]', 'F2[3]', 'F2[4]',
            'F2[5]', 'F12[0]', 'F12[1]', 'F12[2]', 'F12[3]', 'F12[4]',
            'F12[5]', 'Fo[0]', 'Fo[1]', 'Fo[2]', 'Fo[3]', 'Fo[4]', 'Fo[5]'
        ]
        x2list = [
            'egb.inputs[h1_0]', 'egb.inputs[h1_1]', 'egb.inputs[h1_2]',
            'egb.inputs[h1_3]', 'egb.inputs[h1_4]', 'egb.inputs[h1_5]',
            'egb.inputs[h2_0]', 'egb.inputs[h2_1]', 'egb.inputs[h2_2]',
            'egb.inputs[h2_3]', 'egb.inputs[h2_4]', 'egb.inputs[h2_5]',
            'egb.inputs[F1_1]', 'egb.inputs[F1_2]', 'egb.inputs[F1_3]',
            'egb.inputs[F1_4]', 'egb.inputs[F1_5]', 'egb.inputs[F2_1]',
            'egb.inputs[F2_2]', 'egb.inputs[F2_3]', 'egb.inputs[F2_4]',
            'egb.inputs[F2_5]', 'egb.outputs[F12_0]', 'egb.outputs[F12_1]',
            'egb.outputs[F12_2]', 'egb.outputs[F12_3]', 'egb.outputs[F12_4]',
            'egb.outputs[F12_5]', 'egb.outputs[Fo_0]', 'egb.outputs[Fo_1]',
            'egb.outputs[Fo_2]', 'egb.outputs[Fo_3]', 'egb.outputs[Fo_4]',
            'egb.outputs[Fo_5]'
        ]
        x1_x2_map = dict(zip(x1list, x2list))
        x1idx_x2idx_map = {
            i: mex_x_order.index(x1_x2_map[m_x_order[i]])
            for i in range(len(m_x_order))
        }

        c1list = [
            'h1bal[1]', 'h1bal[2]', 'h1bal[3]', 'h1bal[4]', 'h1bal[5]',
            'h2bal[1]', 'h2bal[2]', 'h2bal[3]', 'h2bal[4]', 'h2bal[5]',
            'F12con[0]', 'F12con[1]', 'F12con[2]', 'F12con[3]', 'F12con[4]',
            'F12con[5]', 'Focon[0]', 'Focon[1]', 'Focon[2]', 'Focon[3]',
            'Focon[4]', 'Focon[5]', 'min_inflow[1]', 'min_inflow[2]',
            'min_inflow[3]', 'min_inflow[4]', 'min_inflow[5]',
            'max_outflow[0]', 'max_outflow[1]', 'max_outflow[2]',
            'max_outflow[3]', 'max_outflow[4]', 'max_outflow[5]', 'h10', 'h20'
        ]
        c2list = [
            'egb.h1bal_1', 'egb.h1bal_2', 'egb.h1bal_3', 'egb.h1bal_4',
            'egb.h1bal_5', 'egb.h2bal_1', 'egb.h2bal_2', 'egb.h2bal_3',
            'egb.h2bal_4', 'egb.h2bal_5', 'egb.output_constraints[F12_0]',
            'egb.output_constraints[F12_1]', 'egb.output_constraints[F12_2]',
            'egb.output_constraints[F12_3]', 'egb.output_constraints[F12_4]',
            'egb.output_constraints[F12_5]', 'egb.output_constraints[Fo_0]',
            'egb.output_constraints[Fo_1]', 'egb.output_constraints[Fo_2]',
            'egb.output_constraints[Fo_3]', 'egb.output_constraints[Fo_4]',
            'egb.output_constraints[Fo_5]', 'min_inflow[1]', 'min_inflow[2]',
            'min_inflow[3]', 'min_inflow[4]', 'min_inflow[5]',
            'max_outflow[0]', 'max_outflow[1]', 'max_outflow[2]',
            'max_outflow[3]', 'max_outflow[4]', 'max_outflow[5]', 'h10', 'h20'
        ]
        c1_c2_map = dict(zip(c1list, c2list))
        c1idx_c2idx_map = {
            i: mex_c_order.index(c1_c2_map[m_c_order[i]])
            for i in range(len(m_c_order))
        }

        # get the primals from m and put them in the correct order for mex
        m_x = m_nlp.get_primals()
        mex_x = np.zeros(len(m_x))
        for i in range(len(m_x)):
            mex_x[x1idx_x2idx_map[i]] = m_x[i]

        # get the duals from m and put them in the correct order for mex
        m_lam = m_nlp.get_duals()
        mex_lam = np.zeros(len(m_lam))
        for i in range(len(m_x)):
            mex_lam[c1idx_c2idx_map[i]] = m_lam[i]

        mex_nlp.set_primals(mex_x)
        mex_nlp.set_duals(mex_lam)

        m_obj = m_nlp.evaluate_objective()
        mex_obj = mex_nlp.evaluate_objective()
        self.assertAlmostEqual(m_obj, mex_obj, places=4)

        m_gobj = m_nlp.evaluate_grad_objective()
        mex_gobj = mex_nlp.evaluate_grad_objective()
        check_vectors_specific_order(self, m_gobj, m_x_order, mex_gobj,
                                     mex_x_order, x1_x2_map)

        m_c = m_nlp.evaluate_constraints()
        mex_c = mex_nlp.evaluate_constraints()
        check_vectors_specific_order(self, m_c, m_c_order, mex_c, mex_c_order,
                                     c1_c2_map)

        m_j = m_nlp.evaluate_jacobian()
        mex_j = mex_nlp.evaluate_jacobian().todense()
        check_sparse_matrix_specific_order(self, m_j, m_c_order, m_x_order,
                                           mex_j, mex_c_order, mex_x_order,
                                           c1_c2_map, x1_x2_map)

        m_h = m_nlp.evaluate_hessian_lag()
        mex_h = mex_nlp.evaluate_hessian_lag()
        check_sparse_matrix_specific_order(self, m_h, m_x_order, m_x_order,
                                           mex_h, mex_x_order, mex_x_order,
                                           x1_x2_map, x1_x2_map)

        mex_h = 0 * mex_h
        mex_nlp.evaluate_hessian_lag(out=mex_h)
        check_sparse_matrix_specific_order(self, m_h, m_x_order, m_x_order,
                                           mex_h, mex_x_order, mex_x_order,
                                           x1_x2_map, x1_x2_map)
    def test_set_and_evaluate(self):
        m = pyo.ConcreteModel()
        m.ex_block = ExternalGreyBoxBlock(concrete=True)
        block = m.ex_block

        m_ex = _make_external_model()
        input_vars = [m_ex.a, m_ex.b, m_ex.r, m_ex.x_out, m_ex.y_out]
        external_vars = [m_ex.x, m_ex.y]
        residual_cons = [m_ex.c_out_1, m_ex.c_out_2]
        external_cons = [m_ex.c_ex_1, m_ex.c_ex_2]
        ex_model = ExternalPyomoModel(
            input_vars,
            external_vars,
            residual_cons,
            external_cons,
        )
        block.set_external_model(ex_model)

        a = m.ex_block.inputs["input_0"]
        b = m.ex_block.inputs["input_1"]
        r = m.ex_block.inputs["input_2"]
        x = m.ex_block.inputs["input_3"]
        y = m.ex_block.inputs["input_4"]
        m.obj = pyo.Objective(expr=(x - 2.0)**2 + (y - 2.0)**2 + (a - 2.0)**2 +
                              (b - 2.0)**2 + (r - 2.0)**2)

        _add_linking_constraints(m)

        nlp = PyomoNLPWithGreyBoxBlocks(m)

        # Set primals in model, get primals in nlp
        # set/get duals
        # evaluate constraints
        # evaluate Jacobian
        # evaluate Hessian
        self.assertEqual(nlp.n_primals(), 8)

        # PyomoNLPWithGreyBoxBlocks sorts variables by name
        primals_names = [
            "a",
            "b",
            "ex_block.inputs[input_0]",
            "ex_block.inputs[input_1]",
            "ex_block.inputs[input_2]",
            "ex_block.inputs[input_3]",
            "ex_block.inputs[input_4]",
            "r",
        ]
        self.assertEqual(nlp.primals_names(), primals_names)
        np.testing.assert_equal(np.zeros(8), nlp.get_primals())

        primals = np.array([0, 1, 2, 3, 4, 5, 6, 7])
        nlp.set_primals(primals)
        np.testing.assert_equal(primals, nlp.get_primals())
        nlp.load_state_into_pyomo()

        for name, val in zip(primals_names, primals):
            var = m.find_component(name)
            self.assertEqual(var.value, val)

        constraint_names = [
            "linking_constraint[0]",
            "linking_constraint[1]",
            "linking_constraint[2]",
            "ex_block.residual_0",
            "ex_block.residual_1",
        ]
        self.assertEqual(constraint_names, nlp.constraint_names())
        residuals = np.array([
            -2.0,
            -2.0,
            3.0,
            # These values were obtained by solving the same system
            # with Ipopt in another script. It may be better to do
            # the solve in this test in case the system changes.
            5.0 - (-3.03051522),
            6.0 - 3.583839997,
        ])
        np.testing.assert_allclose(residuals,
                                   nlp.evaluate_constraints(),
                                   rtol=1e-8)

        duals = np.array([1, 2, 3, 4, 5])
        nlp.set_duals(duals)

        self.assertEqual(ex_model.residual_con_multipliers, [4, 5])
        np.testing.assert_equal(nlp.get_duals(), duals)