def test_1(self): ''' The simplest case that the black box has only two inputs and there is only one black block involved ''' def blackbox(a,b): return sin(a-b) m = self.m bb = ExternalFunction(blackbox) m.eflist = [bb] m.c1 = Constraint(expr=m.x[0] * m.z[0]**2 + bb(m.x[0],m.x[1]) == 2*sqrt(2.0)) pI = PyomoInterface(m, [bb], ConfigBlock()) self.assertEqual(pI.lx,2) self.assertEqual(pI.ly,1) self.assertEqual(pI.lz,3) self.assertEqual(len(list(identify_variables(m.c1.body))),3) self.assertEqual(len(list(identify_variables(m.c2.body))),2)
def test_2(self): ''' The simplest case that the black box has only one inputs and there is only a formula ''' def blackbox(a): return sin(a) m = self.m bb = ExternalFunction(blackbox) m.eflist = [bb] m.c1 = Constraint(expr=m.x[0] * m.z[0]**2 + bb(m.x[0]-m.x[1]) == 2*sqrt(2.0)) pI = PyomoInterface(m, [bb], ConfigBlock()) self.assertEqual(pI.lx,1) self.assertEqual(pI.ly,1) self.assertEqual(pI.lz,5) self.assertEqual(len(list(identify_variables(m.c1.body))),3) self.assertEqual(len(list(identify_variables(m.c2.body))),2) self.assertEqual(len(m.tR.conset),1) self.assertEqual(len(list(identify_variables(m.tR.conset[1].body))),3)
def TRF(m, eflist, config): """The main function of the Trust Region Filter algorithm m is a PyomoModel containing ExternalFunction() objects Model requirements: m is a nonlinear program, with exactly one active objective function. eflist is a list of ExternalFunction objects that should be treated with the trust region config is the persistent set of variables defined in the ConfigBlock class object Return: model is solved, variables are at optimal solution or other exit condition. model is left in reformulated form, with some new variables introduced in a block named "tR" TODO: reverse the transformation. """ logger = Logger() filteR = Filter() problem = PyomoInterface(m, eflist) x, y, z = problem.getInitialValue() iteration = -1 romParam, yr = problem.buildROM(x, config.sample_radius) #y = yr rebuildROM = False xk, yk, zk = cloneXYZ(x, y, z) chik = 1e8 thetak = norm(yr - yk, 1) objk = problem.evaluateObj(x, y, z) while True: if iteration >= 0: logger.printIteration(iteration) #print(xk) # increment iteration counter iteration = iteration + 1 if iteration > config.max_it: print("EXIT: Maxmium iterations\n") break ###### Why is this here ########### if iteration == 1: config.sample_region = False ################################ # Keep Sample Region within Trust Region if config.trust_radius < config.sample_radius: config.sample_radius = max( config.sample_radius_adjust * config.trust_radius, config.delta_min) rebuildROM = True #Generate a RM r_k (x) that is kappa-fully linear on sigma k if (rebuildROM): #TODO: Ask Jonathan what variable 1e-3 should be if config.trust_radius < 1e-3: problem.romtype = ROMType.linear else: problem.romtype = config.reduced_model_type romParam, yr = problem.buildROM(x, config.sample_radius) #print(romParam) #print(config.sample_radius) # Criticality Check if iteration > 0: flag, chik = problem.criticalityCheck(x, y, z, romParam) if (not flag): raise Exception("Criticality Check fails!\n") # Save the iteration information to the logger logger.newIter(iteration, xk, yk, zk, thetak, objk, chik, config.print_variables) # Check for Termination if (thetak < config.ep_i and chik < config.ep_chi and config.sample_radius < config.ep_delta): print("EXIT: OPTIMAL SOLUTION FOUND") break # If trust region very small and no progress is being made, # terminate. The following condition must hold for two # consecutive iterations. if (config.trust_radius <= config.delta_min and thetak < config.ep_i): if subopt_flag: print("EXIT: FEASIBLE SOLUTION FOUND ") break else: subopt_flag = True else: # This condition holds for iteration 0, which will declare # the boolean subopt_flag subopt_flag = False # New criticality phase if not config.sample_region: config.sample_radius = config.trust_radius / 2.0 if config.sample_radius > chik * config.criticality_check: config.sample_radius = config.sample_radius / 10.0 config.trust_radius = config.sample_radius * 2 else: config.sample_radius = max( min(config.sample_radius, chik * config.criticality_check), config.delta_min) logger.setCurIter(trustRadius=config.trust_radius, sampleRadius=config.sample_radius) # Compatibility Check (Definition 2) # radius=max(kappa_delta*config.trust_radius*min(1,kappa_mu*config.trust_radius**mu), # delta_min) radius = max( config.kappa_delta * config.trust_radius * min(1, config.kappa_mu * pow(config.trust_radius, config.mu)), config.delta_min) try: flag, obj = problem.compatibilityCheck( x, y, z, xk, yk, zk, romParam, radius, config.compatibility_penalty) except: print("Compatibility check failed, unknown error") raise if not flag: raise Exception("Compatibility check fails!\n") theNorm = norm(x - xk, 2)**2 + norm(z - zk, 2)**2 if (obj - config.compatibility_penalty * theNorm > config.ep_compatibility): # Restoration stepNorm yr = problem.evaluateDx(x) theta = norm(yr - y, 1) logger.iterlog.restoration = True fe = FilterElement(objk - config.gamma_f * thetak, (1 - config.gamma_theta) * thetak) filteR.addToFilter(fe) rhok = 1 - ((theta - config.ep_i) / max(thetak, config.ep_i)) if rhok < config.eta1: config.trust_radius = max(config.gamma_c * config.trust_radius, config.delta_min) elif rhok >= config.eta2: config.trust_radius = min(config.gamma_e * config.trust_radius, config.radius_max) obj = problem.evaluateObj(x, y, z) stepNorm = norm(packXYZ(x - xk, y - yk, z - zk), inf) logger.setCurIter(stepNorm=stepNorm) else: # Solve TRSP_k flag, obj = problem.TRSPk(x, y, z, xk, yk, zk, romParam, config.trust_radius) if not flag: raise Exception("TRSPk fails!\n") # Filter yr = problem.evaluateDx(x) stepNorm = norm(packXYZ(x - xk, y - yk, z - zk), inf) logger.setCurIter(stepNorm=stepNorm) theta = norm(yr - y, 1) fe = FilterElement(obj, theta) if not filteR.checkAcceptable(fe, config.theta_max) and iteration > 0: logger.iterlog.rejected = True config.trust_radius = max(config.gamma_c * stepNorm, config.delta_min) rebuildROM = False x, y, z = cloneXYZ(xk, yk, zk) continue # Switching Condition and Trust Region update if (((objk - obj) >= config.kappa_theta * pow(thetak, config.gamma_s)) and (thetak < config.theta_min)): logger.iterlog.fStep = True config.trust_radius = min( max(config.gamma_e * stepNorm, config.trust_radius), config.radius_max) else: logger.iterlog.thetaStep = True fe = FilterElement(obj - config.gamma_f * theta, (1 - config.gamma_theta) * theta) filteR.addToFilter(fe) # Calculate rho for theta step trust region update rhok = 1 - ((theta - config.ep_i) / max(thetak, config.ep_i)) if rhok < config.eta1: config.trust_radius = max(config.gamma_c * stepNorm, config.delta_min) elif rhok >= config.eta2: config.trust_radius = min( max(config.gamma_e * stepNorm, config.trust_radius), config.radius_max) # Accept step rebuildROM = True xk, yk, zk = cloneXYZ(x, y, z) thetak = theta objk = obj logger.printVectors()
def TRF(m, eflist): """ The main function of the Trust Region Filter algorithm m is a PyomoModel containing ExternalFunction() objects Model requirements: m is a nonlinear program, with exactly one active objective function. eflist is a list of ExternalFunction objects that should be treated with the trust region Return: model is solved, variables are at optimal solution or other exit condition. model is left in reformulated form, with some new variables introduced in a block named "tR" TODO: reverse the transformation. """ logger = Logger() filteR = Filter() problem = PyomoInterface(m, eflist) x, y, z = problem.getInitialValue() trustRadius = TRUST_RADIUS sampleRadius = SAMPLE_RADIUS sampleregion_yn = SAMPLEREGION_YN iteration = -1 romParam, yr = problem.buildROM(x, sampleRadius) #y = yr rebuildROM = False xk, yk, zk = cloneXYZ(x, y, z) chik = 1e8 thetak = norm(yr - yk, 1) objk = problem.evaluateObj(x, y, z) while True: if (iteration >= 0): logger.printIteration(iteration) #print(xk) # increment iteration counter iteration = iteration + 1 if (iteration > MAXIT): print("EXIT: Maxmium iterations\n") break ###### Why is this here ########### if iteration == 1: sampleregion_yn = False ################################ # Keep Sample Region within Trust Region if trustRadius < sampleRadius: sampleRadius = max(SR_ADJUST * trustRadius, DELTMIN) rebuildROM = True #Generate a RM r_k (x) that is κ-fully linear on sigma k if (rebuildROM): if trustRadius < 1e-3: problem.romtype = ROMType.linear else: problem.romtype = DEFAULT_ROMTYPE romParam, yr = problem.buildROM(x, sampleRadius) #print(romParam) #print(sampleRadius) # Criticality Check if iteration > 0: flag, chik = problem.criticalityCheck(x, y, z, romParam) if (not flag): raise Exception("Criticality Check fails!\n") # Save the iteration information to the logger logger.newIter(iteration, xk, yk, zk, thetak, objk, chik) # Check for Termination if thetak < EP_I and chik < EP_CHI and sampleRadius < EP_DELT: print("EXIT: OPTIMAL SOLUTION FOUND") break # If trust region very small and no progress is being made, terminate # The following condition must hold for two consecutive iterations. if trustRadius <= DELTMIN and thetak < EP_I: if subopt_flag: print("EXIT: FEASIBLE SOLUTION FOUND ") break else: subopt_flag = True else: # This condition holds for iteration 0, which will declare the boolean subopt_flag subopt_flag = False # New criticality phase if not sampleregion_yn: sampleRadius = trustRadius / 2.0 if sampleRadius > chik * CRITICALITY_CHECK: sampleRadius = sampleRadius / 10.0 trustRadius = sampleRadius * 2 else: sampleRadius = max(min(sampleRadius, chik * CRITICALITY_CHECK), DELTMIN) logger.setCurIter(trustRadius=trustRadius, sampleRadius=sampleRadius) # Compatibility Check radius = max(KAPPA_DELTA * trustRadius * \ min(1, KAPPA_MU * pow(trustRadius, MU)),DELTMIN) try: flag, obj = problem.compatibilityCheck(x, y, z, xk, yk, zk, romParam, radius, COMPAT_PENALTY) except: print("Compatibility check failed, unknown error") raise if not flag: raise Exception("Compatibility check fails!\n") if (obj - COMPAT_PENALTY * (norm(x - xk, 2)**2 + norm(z - zk, 2)**2) > EP_COMPAT): # Restoration stepNorm yr = problem.evaluateDx(x) theta = norm(yr - y, 1) logger.iterlog.restoration = True fe = FilterElement(objk - GAMMA_F * thetak, (1 - GAMMA_THETA) * thetak) filteR.addToFilter(fe) rhok = 1 - (theta - EP_I) / max(thetak, EP_I) if (rhok < ETA1): trustRadius = max(GAMMA_C * trustRadius, DELTMIN) elif (rhok >= ETA2): trustRadius = min(GAMMA_E * trustRadius, RADIUS_MAX) obj = problem.evaluateObj(x, y, z) stepNorm = norm(packXYZ(x - xk, y - yk, z - zk), inf) logger.setCurIter(stepNorm=stepNorm) else: # Solve TRSP_k flag, obj = problem.TRSPk(x, y, z, xk, yk, zk, romParam, trustRadius) if not flag: raise Exception("TRSPk fails!\n") # Filter yr = problem.evaluateDx(x) stepNorm = norm(packXYZ(x - xk, y - yk, z - zk), inf) logger.setCurIter(stepNorm=stepNorm) theta = norm(yr - y, 1) fe = FilterElement(obj, theta) if not filteR.checkAcceptable(fe) and iteration > 0: logger.iterlog.rejected = True trustRadius = max(GAMMA_C * stepNorm, DELTMIN) rebuildROM = False x, y, z = cloneXYZ(xk, yk, zk) continue # Switching Condition and Trust Region update if ((objk - obj) >= KAPPA_THETA * pow(thetak, GAMMA_S) and thetak < THETA_MIN): logger.iterlog.fStep = True trustRadius = min(max(GAMMA_E * stepNorm, trustRadius), RADIUS_MAX) else: logger.iterlog.thetaStep = True fe = FilterElement(obj - GAMMA_F * theta, (1 - GAMMA_THETA) * theta) filteR.addToFilter(fe) # Calculate rho for theta step trust region update rhok = 1 - (theta - EP_I) / max(thetak, EP_I) if (rhok < ETA1): trustRadius = max(GAMMA_C * stepNorm, DELTMIN) elif (rhok >= ETA2): trustRadius = min(max(GAMMA_E * stepNorm, trustRadius), RADIUS_MAX) # Accept step rebuildROM = True xk, yk, zk = cloneXYZ(x, y, z) thetak = theta objk = obj logger.printVectors()