def _apply_to(self, model, detect_fixed_vars=True): """Apply the transformation to the given model.""" # Generate the equality sets eq_var_map = _build_equality_set(model) # Detect and process fixed variables. if detect_fixed_vars: _fix_equality_fixed_variables(model) # Generate aggregation infrastructure model._var_aggregator_info = Block( doc="Holds information for the variable aggregation " "transformation system.") z = model._var_aggregator_info.z = VarList(doc="Aggregated variables.") # Map of the aggregate var to the equalty set (ComponentSet) z_to_vars = model._var_aggregator_info.z_to_vars = ComponentMap() # Map of variables to their corresponding aggregate var var_to_z = model._var_aggregator_info.var_to_z = ComponentMap() processed_vars = ComponentSet() # TODO This iteritems is sorted by the variable name of the key in # order to preserve determinism. Unfortunately, var.name() is an # expensive operation right now. for var, eq_set in sorted(eq_var_map.items(), key=lambda tup: tup[0].name): if var in processed_vars: continue # Skip already-process variables # This would be weird. The variable hasn't been processed, but is # in the map. Raise an exception. assert var_to_z.get(var, None) is None z_agg = z.add() z_to_vars[z_agg] = eq_set var_to_z.update(ComponentMap((v, z_agg) for v in eq_set)) # Set the bounds of the aggregate variable based on the bounds of # the variables in its equality set. z_agg.setlb(max_if_not_None(v.lb for v in eq_set if v.has_lb())) z_agg.setub(min_if_not_None(v.ub for v in eq_set if v.has_ub())) # Set the fixed status of the aggregate var fixed_vars = [v for v in eq_set if v.fixed] if fixed_vars: # Check to make sure all the fixed values are the same. if any(var.value != fixed_vars[0].value for var in fixed_vars[1:]): raise ValueError( "Aggregate variable for equality set is fixed to " "multiple different values: %s" % (fixed_vars, )) z_agg.fix(fixed_vars[0].value) # Check that the fixed value lies within bounds. if z_agg.has_lb() and z_agg.value < value(z_agg.lb): raise ValueError( "Aggregate variable for equality set is fixed to " "a value less than its lower bound: %s < LB %s" % (z_agg.value, value(z_agg.lb))) if z_agg.has_ub() and z_agg.value > value(z_agg.ub): raise ValueError( "Aggregate variable for equality set is fixed to " "a value greater than its upper bound: %s > UB %s" % (z_agg.value, value(z_agg.ub))) else: # Set the value to be the average of the values within the # bounds only if the value is not already fixed. values_within_bounds = [ v.value for v in eq_set if (v.value is not None and ( not z_agg.has_lb() or v.value >= value(z_agg.lb)) and ( not z_agg.has_ub() or v.value <= value(z_agg.ub))) ] if values_within_bounds: z_agg.set_value(sum(values_within_bounds) / len(values_within_bounds), skip_validation=True) processed_vars.update(eq_set) # Do the substitution substitution_map = {id(var): z_var for var, z_var in var_to_z.items()} visitor = ExpressionReplacementVisitor( substitute=substitution_map, descend_into_named_expressions=True, remove_named_expressions=False, ) for constr in model.component_data_objects(ctype=Constraint, active=True): orig_body = constr.body new_body = visitor.walk_expression(constr.body) if orig_body is not new_body: constr.set_value((constr.lower, new_body, constr.upper)) for objective in model.component_data_objects(ctype=Objective, active=True): orig_expr = objective.expr new_expr = visitor.walk_expression(objective.expr) if orig_expr is not new_expr: objective.set_value(new_expr)
def _add_optimality_conditions(self, instance, submodel): """ Add optimality conditions for the submodel This assumes that the original model has the form: min c1*x + d1*y A3*x <= b3 A1*x + B1*y <= b1 min c2*x + d2*y + x'*Q*y A2*x + B2*y + x'*E2*y <= b2 y >= 0 NOTE THE VARIABLE BOUNDS! """ # # Populate the block with the linear constraints. # Note that we don't simply clone the current block. # We need to collect a single set of equations that # can be easily expressed. # d2 = {} B2 = {} vtmp = {} utmp = {} sids_set = set() sids_list = [] # block = Block(concrete=True) block.u = VarList() block.v = VarList() block.c1 = ConstraintList() block.c2 = ComplementarityList() block.c3 = ComplementarityList() # # Collect submodel objective terms # # TODO: detect fixed variables # for odata in submodel.component_data_objects(Objective, active=True): if odata.sense == maximize: d_sense = -1 else: d_sense = 1 # # Iterate through the variables in the representation # o_terms = generate_standard_repn(odata.expr, compute_values=False) # # Linear terms # for i, var in enumerate(o_terms.linear_vars): if var.parent_component().local_name in self._fixed_upper_vars: # # Skip fixed upper variables # continue # # Store the coefficient for the variable. The coefficient is # negated if the objective is maximized. # id_ = id(var) d2[id_] = d_sense * o_terms.linear_coefs[i] if not id_ in sids_set: sids_set.add(id_) sids_list.append(id_) # # Quadratic terms # for i, var in enumerate(o_terms.quadratic_vars): if var[0].parent_component( ).local_name in self._fixed_upper_vars: if var[1].parent_component( ).local_name in self._fixed_upper_vars: # # Skip fixed upper variables # continue # # Add the linear term # id_ = id(var[1]) d2[id_] = d2.get( id_, 0) + d_sense * o_terms.quadratic_coefs[i] * var[0] if not id_ in sids_set: sids_set.add(id_) sids_list.append(id_) elif var[1].parent_component( ).local_name in self._fixed_upper_vars: # # Add the linear term # id_ = id(var[0]) d2[id_] = d2.get( id_, 0) + d_sense * o_terms.quadratic_coefs[i] * var[1] if not id_ in sids_set: sids_set.add(id_) sids_list.append(id_) else: raise RuntimeError( "Cannot apply this transformation to a problem with quadratic terms where both variables are in the lower level." ) # # Stop after the first objective # break # # Iterate through all lower level variables, adding dual variables # and complementarity slackness conditions for y bound constraints # for vcomponent in instance.component_objects(Var, active=True): if vcomponent.local_name in self._fixed_upper_vars: # # Skip fixed upper variables # continue for ndx in vcomponent: # # For each index, get the bounds for the variable # lb, ub = vcomponent[ndx].bounds if not lb is None: # # Add the complementarity slackness condition for a lower bound # v = block.v.add() block.c3.add(complements(vcomponent[ndx] >= lb, v >= 0)) else: v = None if not ub is None: # # Add the complementarity slackness condition for an upper bound # w = block.v.add() vtmp[id(vcomponent[ndx])] = w block.c3.add(complements(vcomponent[ndx] <= ub, w >= 0)) else: w = None if not (v is None and w is None): # # Record the variables for which complementarity slackness conditions # were created. # id_ = id(vcomponent[ndx]) vtmp[id_] = (v, w) if not id_ in sids_set: sids_set.add(id_) sids_list.append(id_) # # Iterate through all constraints, adding dual variables and # complementary slackness conditions (for inequality constraints) # for cdata in submodel.component_data_objects(Constraint, active=True): if cdata.equality: # Don't add a complementary slackness condition for an equality constraint u = block.u.add() utmp[id(cdata)] = (None, u) else: if not cdata.lower is None: # # Add the complementarity slackness condition for a greater-than inequality # u = block.u.add() block.c2.add( complements(-cdata.body <= -cdata.lower, u >= 0)) else: u = None if not cdata.upper is None: # # Add the complementarity slackness condition for a less-than inequality # w = block.u.add() block.c2.add(complements(cdata.body <= cdata.upper, w >= 0)) else: w = None if not (u is None and w is None): utmp[id(cdata)] = (u, w) # # Store the coefficients for the contraint variables that are not fixed # c_terms = generate_standard_repn(cdata.body, compute_values=False) # # Linear terms # for i, var in enumerate(c_terms.linear_vars): if var.parent_component().local_name in self._fixed_upper_vars: continue id_ = id(var) B2.setdefault(id_, {}).setdefault(id(cdata), c_terms.linear_coefs[i]) if not id_ in sids_set: sids_set.add(id_) sids_list.append(id_) # # Quadratic terms # for i, var in enumerate(c_terms.quadratic_vars): if var[0].parent_component( ).local_name in self._fixed_upper_vars: if var[1].parent_component( ).local_name in self._fixed_upper_vars: continue id_ = id(var[1]) if id_ in B2: B2[id_][id( cdata)] = c_terms.quadratic_coefs[i] * var[0] else: B2.setdefault(id_, {}).setdefault( id(cdata), c_terms.quadratic_coefs[i] * var[0]) if not id_ in sids_set: sids_set.add(id_) sids_list.append(id_) elif var[1].parent_component( ).local_name in self._fixed_upper_vars: id_ = id(var[0]) if id_ in B2: B2[id_][id( cdata)] = c_terms.quadratic_coefs[i] * var[1] else: B2.setdefault(id_, {}).setdefault( id(cdata), c_terms.quadratic_coefs[i] * var[1]) if not id_ in sids_set: sids_set.add(id_) sids_list.append(id_) else: raise RuntimeError( "Cannot apply this transformation to a problem with quadratic terms where both variables are in the lower level." ) # # Generate stationarity equations # tmp__ = (None, None) for vid in sids_list: exp = d2.get(vid, 0) # lb_dual, ub_dual = vtmp.get(vid, tmp__) if vid in vtmp: if not lb_dual is None: exp -= lb_dual # dual for variable lower bound if not ub_dual is None: exp += ub_dual # dual for variable upper bound # B2_ = B2.get(vid, {}) utmp_keys = list(utmp.keys()) if self._deterministic: utmp_keys.sort(key=lambda x: utmp[x][0].local_name if utmp[x][ 1] is None else utmp[x][1].local_name) for uid in utmp_keys: if uid in B2_: lb_dual, ub_dual = utmp[uid] if not lb_dual is None: exp -= B2_[uid] * lb_dual if not ub_dual is None: exp += B2_[uid] * ub_dual if type(exp) in six.integer_types or type(exp) is float: # TODO: Annotate the model as unbounded raise IOError("Unbounded variable without side constraints") else: block.c1.add(exp == 0) # # Return block # return block