示例#1
0
    def handle_results(self, res):
        # sympy to pyomo converter

        self._results[Metrics.RMSE] = self.alamopy_results['rmse']
        self._results[Metrics.SSE] = self.alamopy_results['ssr']
        self._results[Metrics.Time] = self.alamopy_results['totaltime']
        self._results[Metrics.MSE] = float(self.alamopy_results['rmse']) ** 2
        self._results[Metrics.Order] = self.alamopy_results['nbas']
        self._results[Metrics.R2] = self.alamopy_results['R2']

        # Generate pyomo expression
        m = pyo.ConcreteModel()
        m.x = pyo.Var(range(len(self._rdata_in)))

        obj_map = PyomoSympyBimap()
        obj_map.sympy2pyomo = {}
        sympy_locals = {}
        i = 1
        for label in res['xlabels']:
            sympy_locals[label] = sympy.Symbol(label)
            sympy_obj = sympy.Symbol(label)
            obj_map.sympy2pyomo[sympy_obj] = m.x[i]
            i += 1

        model_string = ""
        if type(res['model']) is dict:
            key = list(res['model'].keys())[0]
            model_string = res['model'][key].split('=')[1]
        else:
            model_string = res['model'].split('=')[1]
        model_symp = parse_expr(model_string.replace("^", "**"), local_dict=sympy_locals)
        model_pyomo = sympy2pyomo_expression(model_symp, obj_map)
        self._model = model_pyomo
示例#2
0
文件: util.py 项目: DLWoodruff/pyomo
def model_is_valid(model):
    '''
    Possibilities:
    Deterministic model has a single objective
    Deterministic model has no objective
    Deterministic model has multiple objectives
    :param model: the deterministic model
    :return: True if it satisfies certain properties, else False.
    '''
    objectives = list(model.component_data_objects(Objective))
    for o in objectives:
        o.deactivate()
    if len(objectives) == 1:
        '''
        Ensure objective is a minimization. If not, change the sense.
        '''
        obj = objectives[0]

        if obj.sense is not minimize:
            sympy_obj = sympyify_expression(-obj.expr)
            # Use sympy to distribute the negation so the method for determining first/second stage costs is valid
            min_obj = Objective(expr=sympy2pyomo_expression(
                sympy_obj[1].simplify(), sympy_obj[0]))
            model.del_component(obj)
            model.add_component(
                unique_component_name(model, obj.name + '_min'), min_obj)
        return True

    elif len(objectives) > 1:
        '''
        User should deactivate all Objectives in the model except the one represented by the output of 
        first_stage_objective + second_stage_objective
        '''
        return False
    else:
        '''
        No Objective objects provided as part of the model, please provide an Objective to your model so that
        PyROS can infer first- and second-stage objective.
        '''
        return False
示例#3
0
def differentiate(expr, wrt=None, wrt_list=None):
    """Return derivative of expression.

    This function returns an expression or list of expression objects
    corresponding to the derivative of the passed expression 'expr' with
    respect to a variable 'wrt' or list of variables 'wrt_list'

    Args:
        expr (Expression): Pyomo expression
        wrt (Var): Pyomo variable
        wrt_list (list): list of Pyomo variables

    Returns:
        Expression or list of Expression objects

    """
    if not sympy_available:
        raise RuntimeError(
            "The sympy module is not available.\n\t"
            "Cannot perform automatic symbolic differentiation.")
    if not ((wrt is None) ^ (wrt_list is None)):
        raise ValueError(
            "differentiate(): Must specify exactly one of wrt and wrt_list")
    import sympy
    #
    # Convert the Pyomo expression to a sympy expression
    #
    objectMap, sympy_expr = sympyify_expression(expr)
    #
    # The partial_derivs dict holds intermediate sympy expressions that
    # we can re-use.  We will prepopulate it with None for all vars that
    # appear in the expression (so that we can detect wrt combinations
    # that are, by definition, 0)
    #
    partial_derivs = {x: None for x in objectMap.sympyVars()}
    #
    # Setup the WRT list
    #
    if wrt is not None:
        wrt_list = [wrt]
    else:
        # Copy the list because we will normalize things in place below
        wrt_list = list(wrt_list)
    #
    # Convert WRT vars into sympy vars
    #
    ans = [None] * len(wrt_list)
    for i, target in enumerate(wrt_list):
        if target.__class__ is not tuple:
            target = (target, )
        wrt_list[i] = tuple(objectMap.getSympySymbol(x) for x in target)
        for x in wrt_list[i]:
            if x not in partial_derivs:
                ans[i] = 0.
                break
    #
    # We assume that users will not request duplicate derivatives.  We
    # will only cache up to the next-to last partial, and if a user
    # requests the exact same derivative twice, then we will just
    # re-calculate it.
    #
    last_partial_idx = max(len(x) for x in wrt_list) - 1
    #
    # Calculate all the derivatives
    #
    for i, target in enumerate(wrt_list):
        if ans[i] is not None:
            continue
        part = sympy_expr
        for j, wrt_var in enumerate(target):
            if j == last_partial_idx:
                part = sympy.diff(part, wrt_var)
            else:
                partial_target = target[:j + 1]
                if partial_target in partial_derivs:
                    part = partial_derivs[partial_target]
                else:
                    part = sympy.diff(part, wrt_var)
                    partial_derivs[partial_target] = part
        ans[i] = sympy2pyomo_expression(part, objectMap)
    #
    # Return the answer
    #
    return ans if wrt is None else ans[0]