def test_solve_consistent_initial_conditions(self): m = make_model() solver = SolverFactory('ipopt') solve_consistent_initial_conditions(m, m.time, solver, allow_skip=True) inconsistent = get_inconsistent_initial_conditions(m, m.time) self.assertFalse(inconsistent) self.assertTrue(m.fs.con1[m.time[1]].active) self.assertTrue(m.fs.con1[m.time[3]].active) self.assertTrue(m.fs.b1.con[m.time[1], m.space[1]].active) self.assertTrue(m.fs.b1.con[m.time[3], m.space[1]].active) with self.assertRaises(KeyError): solve_consistent_initial_conditions( m, m.time, solver, allow_skip=False, )
def main(plot_switch=False): # This tests the same model constructed in the test_nmpc_constructor_1 file m_controller = make_model(horizon=3, ntfe=30, ntcp=2, bounds=True) sample_time = 0.5 m_plant = make_model(horizon=sample_time, ntfe=5, ntcp=2) time_plant = m_plant.fs.time solve_consistent_initial_conditions(m_plant, time_plant, solver) ##### # Flatten and categorize controller model ##### model = m_controller time = model.fs.time t0 = time.first() t1 = time[2] scalar_vars, dae_vars = flatten_dae_components( model, time, pyo.Var, ) scalar_cons, dae_cons = flatten_dae_components( model, time, pyo.Constraint, ) inputs = [ model.fs.mixer.S_inlet.flow_vol, model.fs.mixer.E_inlet.flow_vol, ] measurements = [ pyo.Reference(model.fs.cstr.outlet.conc_mol[:, 'C']), pyo.Reference(model.fs.cstr.outlet.conc_mol[:, 'E']), pyo.Reference(model.fs.cstr.outlet.conc_mol[:, 'S']), pyo.Reference(model.fs.cstr.outlet.conc_mol[:, 'P']), model.fs.cstr.outlet.temperature, ] model.fs.cstr.control_volume.material_holdup[:, 'aq', 'Solvent'].fix() model.fs.cstr.total_flow_balance.deactivate() var_partition, con_partition = categorize_dae_variables_and_constraints( model, dae_vars, dae_cons, time, input_vars=inputs, ) controller = ControllerBlock( model=model, time=time, measurements=measurements, category_dict={None: var_partition}, ) controller.construct() solve_consistent_initial_conditions(m_controller, time, solver) controller.initialize_to_initial_conditions() m_controller._dummy_obj = pyo.Objective(expr=0) nlp = PyomoNLP(m_controller) igraph = IncidenceGraphInterface(nlp) m_controller.del_component(m_controller._dummy_obj) diff_vars = [var[t1] for var in var_partition[VC.DIFFERENTIAL]] alg_vars = [var[t1] for var in var_partition[VC.ALGEBRAIC]] deriv_vars = [var[t1] for var in var_partition[VC.DERIVATIVE]] diff_eqns = [con[t1] for con in con_partition[CC.DIFFERENTIAL]] alg_eqns = [con[t1] for con in con_partition[CC.ALGEBRAIC]] # Assemble and factorize "derivative Jacobian" dfdz = nlp.extract_submatrix_jacobian(diff_vars, diff_eqns) dfdy = nlp.extract_submatrix_jacobian(alg_vars, diff_eqns) dgdz = nlp.extract_submatrix_jacobian(diff_vars, alg_eqns) dgdy = nlp.extract_submatrix_jacobian(alg_vars, alg_eqns) dfdzdot = nlp.extract_submatrix_jacobian(deriv_vars, diff_eqns) fact = sps.linalg.splu(dgdy.tocsc()) dydz = fact.solve(dgdz.toarray()) deriv_jac = dfdz - dfdy.dot(dydz) fact = sps.linalg.splu(dfdzdot.tocsc()) dzdotdz = -fact.solve(deriv_jac) # Use some heuristic on the eigenvalues of the derivative Jacobian # to identify fast states. w, V = np.linalg.eig(dzdotdz) w_max = np.max(np.abs(w)) fast_modes, = np.where(np.abs(w) > w_max / 2) fast_states = [] for idx in fast_modes: evec = V[:, idx] _fast_states, _ = np.where(np.abs(evec) > 0.5) fast_states.extend(_fast_states) fast_states = set(fast_states) # Store components necessary for model reduction in a model- # independent form. fast_state_derivs = [ pyo.ComponentUID(var_partition[VC.DERIVATIVE][idx].referent, context=model) for idx in fast_states ] fast_state_diffs = [ pyo.ComponentUID(var_partition[VC.DIFFERENTIAL][idx].referent, context=model) for idx in fast_states ] fast_state_discs = [ pyo.ComponentUID(con_partition[CC.DISCRETIZATION][idx].referent, context=model) for idx in fast_states ] # Perform pseudo-steady state model reduction on the fast states # and re-categorize for cuid in fast_state_derivs: var = cuid.find_component_on(m_controller) var.fix(0.0) for cuid in fast_state_diffs: var = cuid.find_component_on(m_controller) var[t0].unfix() for cuid in fast_state_discs: con = cuid.find_component_on(m_controller) con.deactivate() var_partition, con_partition = categorize_dae_variables_and_constraints( model, dae_vars, dae_cons, time, input_vars=inputs, ) controller.del_component(model) # Re-construct controller block with new categorization measurements = [ pyo.Reference(model.fs.cstr.outlet.conc_mol[:, 'C']), pyo.Reference(model.fs.cstr.outlet.conc_mol[:, 'E']), pyo.Reference(model.fs.cstr.outlet.conc_mol[:, 'S']), pyo.Reference(model.fs.cstr.outlet.conc_mol[:, 'P']), ] controller = ControllerBlock( model=model, time=time, measurements=measurements, category_dict={None: var_partition}, ) controller.construct() ##### # Construct dynamic block for plant ##### model = m_plant time = model.fs.time t0 = time.first() t1 = time[2] scalar_vars, dae_vars = flatten_dae_components( model, time, pyo.Var, ) scalar_cons, dae_cons = flatten_dae_components( model, time, pyo.Constraint, ) inputs = [ model.fs.mixer.S_inlet.flow_vol, model.fs.mixer.E_inlet.flow_vol, ] measurements = [ pyo.Reference(model.fs.cstr.outlet.conc_mol[:, 'C']), pyo.Reference(model.fs.cstr.outlet.conc_mol[:, 'E']), pyo.Reference(model.fs.cstr.outlet.conc_mol[:, 'S']), pyo.Reference(model.fs.cstr.outlet.conc_mol[:, 'P']), ] model.fs.cstr.control_volume.material_holdup[:, 'aq', 'Solvent'].fix() model.fs.cstr.total_flow_balance.deactivate() var_partition, con_partition = categorize_dae_variables_and_constraints( model, dae_vars, dae_cons, time, input_vars=inputs, ) plant = DynamicBlock( model=model, time=time, measurements=measurements, category_dict={None: var_partition}, ) plant.construct() p_t0 = plant.time.first() c_t0 = controller.time.first() p_ts = plant.sample_points[1] c_ts = controller.sample_points[1] controller.set_sample_time(sample_time) plant.set_sample_time(sample_time) # We now perform the "RTO" calculation: Find the optimal steady state # to achieve the following setpoint setpoint = [ (controller.mod.fs.cstr.outlet.conc_mol[0, 'P'], 0.4), #(controller.mod.fs.cstr.outlet.conc_mol[0, 'S'], 0.01), (controller.mod.fs.cstr.outlet.conc_mol[0, 'S'], 0.1), (controller.mod.fs.cstr.control_volume.energy_holdup[0, 'aq'], 300), (controller.mod.fs.mixer.E_inlet.flow_vol[0], 0.1), (controller.mod.fs.mixer.S_inlet.flow_vol[0], 2.0), (controller.mod.fs.cstr.volume[0], 1.0), ] setpoint_weights = [ (controller.mod.fs.cstr.outlet.conc_mol[0, 'P'], 1.), (controller.mod.fs.cstr.outlet.conc_mol[0, 'S'], 1.), (controller.mod.fs.cstr.control_volume.energy_holdup[0, 'aq'], 1.), (controller.mod.fs.mixer.E_inlet.flow_vol[0], 1.), (controller.mod.fs.mixer.S_inlet.flow_vol[0], 1.), (controller.mod.fs.cstr.volume[0], 1.), ] # Some of the "differential variables" that have been fixed in the # model file are different from the measurements listed above. We # unfix them here so the RTO solve is not overconstrained. # (The RTO solve will only automatically unfix inputs and measurements.) controller.mod.fs.cstr.control_volume.material_holdup[0, ...].unfix() controller.mod.fs.cstr.control_volume.energy_holdup[0, ...].unfix() #controller.mod.fs.cstr.volume[0].unfix() controller.mod.fs.cstr.control_volume.material_holdup[0, 'aq', 'Solvent'].fix() controller.add_setpoint_objective(setpoint, setpoint_weights) controller.solve_setpoint(solver) # Now we are ready to construct the tracking NMPC problem tracking_weights = [ *((v, 1.) for v in controller.vectors.differential[:, 0]), *((v, 1.) for v in controller.vectors.input[:, 0]), ] controller.add_tracking_objective(tracking_weights) controller.constrain_control_inputs_piecewise_constant() controller.initialize_to_initial_conditions() # Solve the first control problem controller.vectors.input[...].unfix() controller.vectors.input[:, 0].fix() solver.solve(controller, tee=True) # For a proper NMPC simulation, we must have noise. # We do this by treating inputs and measurements as Gaussian random # variables with the following variances (and bounds). cstr = controller.mod.fs.cstr variance = [ (cstr.outlet.conc_mol[0.0, 'S'], 0.01), (cstr.outlet.conc_mol[0.0, 'E'], 0.005), (cstr.outlet.conc_mol[0.0, 'C'], 0.01), (cstr.outlet.conc_mol[0.0, 'P'], 0.005), (cstr.outlet.temperature[0.0], 1.), (cstr.volume[0.0], 0.05), ] controller.set_variance(variance) measurement_variance = [ v.variance for v in controller.MEASUREMENT_BLOCK[:].var ] measurement_noise_bounds = [(0.0, var[c_t0].ub) for var in controller.MEASUREMENT_BLOCK[:].var] mx = plant.mod.fs.mixer variance = [ (mx.S_inlet_state[0.0].flow_vol, 0.02), (mx.E_inlet_state[0.0].flow_vol, 0.001), ] plant.set_variance(variance) input_variance = [v.variance for v in plant.INPUT_BLOCK[:].var] input_noise_bounds = [(0.0, var[p_t0].ub) for var in plant.INPUT_BLOCK[:].var] random.seed(100) # Extract inputs from controller and inject them into plant inputs = controller.generate_inputs_at_time(c_ts) plant.inject_inputs(inputs) # This "initialization" really simulates the plant with the new inputs. plant.vectors.input[:, :].fix() plant.initialize_by_solving_elements(solver) plant.vectors.input[:, :].fix() solver.solve(plant, tee=True) for i in range(1, 11): print('\nENTERING NMPC LOOP ITERATION %s\n' % i) measured = plant.generate_measurements_at_time(p_ts) plant.advance_one_sample() plant.initialize_to_initial_conditions() measured = apply_noise_with_bounds( measured, measurement_variance, random.gauss, measurement_noise_bounds, ) controller.advance_one_sample() controller.load_measurements(measured) solver.solve(controller, tee=True) inputs = controller.generate_inputs_at_time(c_ts) inputs = apply_noise_with_bounds( inputs, input_variance, random.gauss, input_noise_bounds, ) plant.inject_inputs(inputs) plant.initialize_by_solving_elements(solver) solver.solve(plant) import pdb pdb.set_trace()
def main(plot_switch=False): # This tests the same model constructed in the test_nmpc_constructor_1 file m_controller = make_model(horizon=3, ntfe=30, ntcp=2, bounds=True) sample_time = 0.5 m_plant = make_model(horizon=sample_time, ntfe=5, ntcp=2) time_plant = m_plant.fs.time simulation_horizon = 60 n_samples_to_simulate = round(simulation_horizon / sample_time) samples_to_simulate = [ time_plant.first() + i * sample_time for i in range(1, n_samples_to_simulate) ] # We must identify for the controller which variables are our # inputs and measurements. inputs = [ m_plant.fs.mixer.S_inlet.flow_vol[0], m_plant.fs.mixer.E_inlet.flow_vol[0], ] measurements = [ m_controller.fs.cstr.outlet.conc_mol[0, 'C'], m_controller.fs.cstr.outlet.conc_mol[0, 'E'], m_controller.fs.cstr.outlet.conc_mol[0, 'S'], m_controller.fs.cstr.outlet.conc_mol[0, 'P'], m_controller.fs.cstr.outlet.temperature[0], m_controller.fs.cstr.volume[0], ] # Construct the "NMPC simulator" object nmpc = NMPCSim( plant_model=m_plant, plant_time_set=m_plant.fs.time, controller_model=m_controller, controller_time_set=m_controller.fs.time, inputs_at_t0=inputs, measurements=measurements, sample_time=sample_time, ) plant = nmpc.plant controller = nmpc.controller p_t0 = nmpc.plant.time.first() c_t0 = nmpc.controller.time.first() p_ts = nmpc.plant.sample_points[1] c_ts = nmpc.controller.sample_points[1] solve_consistent_initial_conditions(plant, plant.time, solver) solve_consistent_initial_conditions(controller, controller.time, solver) # We now perform the "RTO" calculation: Find the optimal steady state # to achieve the following setpoint setpoint = [ (controller.mod.fs.cstr.outlet.conc_mol[0, 'P'], 0.4), (controller.mod.fs.cstr.outlet.conc_mol[0, 'S'], 0.0), (controller.mod.fs.cstr.control_volume.energy_holdup[0, 'aq'], 300), (controller.mod.fs.mixer.E_inlet.flow_vol[0], 0.1), (controller.mod.fs.mixer.S_inlet.flow_vol[0], 2.0), (controller.mod.fs.cstr.volume[0], 1.0), ] setpoint_weights = [ (controller.mod.fs.cstr.outlet.conc_mol[0, 'P'], 1.), (controller.mod.fs.cstr.outlet.conc_mol[0, 'S'], 1.), (controller.mod.fs.cstr.control_volume.energy_holdup[0, 'aq'], 1.), (controller.mod.fs.mixer.E_inlet.flow_vol[0], 1.), (controller.mod.fs.mixer.S_inlet.flow_vol[0], 1.), (controller.mod.fs.cstr.volume[0], 1.), ] # Some of the "differential variables" that have been fixed in the # model file are different from the measurements listed above. We # unfix them here so the RTO solve is not overconstrained. # (The RTO solve will only automatically unfix inputs and measurements.) nmpc.controller.mod.fs.cstr.control_volume.material_holdup[0, ...].unfix() nmpc.controller.mod.fs.cstr.control_volume.energy_holdup[0, ...].unfix() nmpc.controller.mod.fs.cstr.volume[0].unfix() nmpc.controller.add_setpoint_objective(setpoint, setpoint_weights) nmpc.controller.solve_setpoint(solver) # Now we are ready to construct the tracking NMPC problem tracking_weights = [ *((v, 1.) for v in nmpc.controller.vectors.differential[:, 0]), *((v, 1.) for v in nmpc.controller.vectors.input[:, 0]), ] nmpc.controller.add_tracking_objective(tracking_weights) nmpc.controller.constrain_control_inputs_piecewise_constant() nmpc.controller.initialize_to_initial_conditions() # Solve the first control problem nmpc.controller.vectors.input[...].unfix() nmpc.controller.vectors.input[:, 0].fix() solver.solve(nmpc.controller, tee=True) # For a proper NMPC simulation, we must have noise. # We do this by treating inputs and measurements as Gaussian random # variables with the following variances (and bounds). cstr = nmpc.controller.mod.fs.cstr variance = [ (cstr.outlet.conc_mol[0.0, 'S'], 0.2), (cstr.outlet.conc_mol[0.0, 'E'], 0.05), (cstr.outlet.conc_mol[0.0, 'C'], 0.1), (cstr.outlet.conc_mol[0.0, 'P'], 0.05), (cstr.outlet.temperature[0.0], 5.), (cstr.volume[0.0], 0.05), ] nmpc.controller.set_variance(variance) measurement_variance = [v.variance for v in controller.measurement_vars] measurement_noise_bounds = [(0.0, var[c_t0].ub) for var in controller.measurement_vars] mx = plant.mod.fs.mixer variance = [ (mx.S_inlet_state[0.0].flow_vol, 0.02), (mx.E_inlet_state[0.0].flow_vol, 0.001), ] nmpc.plant.set_variance(variance) input_variance = [v.variance for v in plant.input_vars] input_noise_bounds = [(0.0, var[p_t0].ub) for var in plant.input_vars] random.seed(246) # Extract inputs from controller and inject them into plant inputs = controller.generate_inputs_at_time(c_ts) plant.inject_inputs(inputs) # This "initialization" really simulates the plant with the new inputs. nmpc.plant.initialize_by_solving_elements(solver) solver.solve(nmpc.plant) for i in range(1, 11): print('\nENTERING NMPC LOOP ITERATION %s\n' % i) measured = nmpc.plant.generate_measurements_at_time(p_ts) nmpc.plant.advance_one_sample() nmpc.plant.initialize_to_initial_conditions() measured = apply_noise_with_bounds( measured, measurement_variance, random.gauss, measurement_noise_bounds, ) nmpc.controller.advance_one_sample() nmpc.controller.load_measurements(measured) solver.solve(nmpc.controller, tee=True) inputs = controller.generate_inputs_at_time(c_ts) inputs = apply_noise_with_bounds( inputs, input_variance, random.gauss, input_noise_bounds, ) plant.inject_inputs(inputs) nmpc.plant.initialize_by_solving_elements(solver) solver.solve(nmpc.plant)