def partialLagrangeParametric(args=None): print("lagrangeParam begins ") blanks = " " # used for formatting print statements class Object(object): pass Result = Object() # options used IndVarName = options.indicator_var_name CCStageNum = options.stage_num alphaTol = options.alpha_tol MaxMorePR = options.MaxMorePR # option to include up to this many PR points above F^* with all delta fixed outputFilePrefix = options.outputFilePrefix # We write ScenarioList = name, probability # PRoptimal = probability, min-cost, [selections] # PRmore = probability, min-cost, [selections] # ================ sorted by probability ======================== # # These can be read to avoid re-computing points ph = PHFromScratch(options) Result.ph = ph rootnode = ph._scenario_tree._stages[0]._tree_nodes[ 0] # use rootnode to loop over scenarios if find_active_objective(ph._scenario_tree._scenarios[0]._instance, safety_checks=True).is_minimizing(): print("We are solving a MINIMIZATION problem.\n") else: print("We are solving a MAXIMIZATION problem.\n") # initialize ScenarioList = [] lambdaval = 0. lagrUtil.Set_ParmValue(ph, options.lambda_parm_name, lambdaval) # IMPORTANT: Preprocess the scenario instances # before fixing variables, otherwise they # will be preprocessed out of the expressions # and the output_fixed_variable_bounds option # will have no effect when we update the # fixed variable values (and then assume we # do not need to preprocess again because # of this option). ph._preprocess_scenario_instances() lagrUtil.FixAllIndicatorVariables(ph, IndVarName, 0) for scenario in rootnode._scenarios: ScenarioList.append((scenario._name, scenario._probability)) # sorts from min to max probability ScenarioList.sort(key=operator.itemgetter(1)) with open(outputFilePrefix + 'ScenarioList.csv', 'w') as outFile: for scenario in ScenarioList: outFile.write(scenario[0] + ", " + str(scenario[1]) + "\n") Result.ScenarioList = ScenarioList print("lambda= " + str(lambdaval) + " ...run begins " + str(len(ScenarioList)) + " scenarios") SolStat, zL = lagrUtil.solve_ph_code(ph, options) print("\t...ends") bL = Compute_ExpectationforVariable(ph, IndVarName, CCStageNum) if bL > 0: print("** bL = " + str(bL) + " > 0") return Result print("Initial cost = " + str(zL) + " for bL = " + str(bL)) lagrUtil.FixAllIndicatorVariables(ph, IndVarName, 1) print("lambda= " + str(lambdaval) + " ...run begins") SolStat, zU = lagrUtil.solve_ph_code(ph, options) print("\t...ends") bU = Compute_ExpectationforVariable(ph, IndVarName, CCStageNum) if bU < 1: print("** bU = " + str(bU) + " < 1") lagrUtil.FreeAllIndicatorVariables(ph, IndVarName) Result.lbz = [[0, bL, zL], [None, bU, zU]] Result.selections = [[], ScenarioList] NumIntervals = 1 print("initial gap = " + str(1 - zL / zU) + " \n") print("End of test; this is only a test.") return Result
def LagrangeParametric(args=None): class Object(object): pass Result = Object() Result.status = 'LagrangeParam begins ' + datetime_string( ) + '...running new ph' ph = None blanks = " " # used for formatting print statements # options used betaMin = options.beta_min betaMax = options.beta_max betaTol = options.beta_tol gapTol = options.Lagrange_gap minProb = options.min_prob maxIntervals = options.max_intervals maxTime = options.max_time IndVarName = options.indicator_var_name multName = options.lambda_parm_name CCStageNum = options.stage_num csvPrefix = options.csvPrefix verbosity = options.verbosity verbosity = 2 # override for debug (= 3 to get super-debug) HGdebug = 0 # special debug (not public) # local...may become option optTol = gapTol #################################################################### STARTTIME = time.time() Result.status = "options set" if verbosity > 1: print("From LagrangeParametric, status = %s\tSTARTTIME = %s" \ % (str(getattr(Result,'status')), str(STARTTIME))) ph = PHFromScratch(options) Result.ph = ph rootnode = ph._scenario_tree._stages[0]._tree_nodes[ 0] # use rootnode to loop over scenarios ReferenceInstance = ph._instances[ rootnode._scenarios[0]._name] # arbitrary scenario if find_active_objective(ph._scenario_tree._scenarios[0]._instance, safety_checks=True).is_minimizing(): sense = 'min' else: sense = 'max' scenario_count = len(full_scenario_tree._stages[-1]._tree_nodes) if options.verbosity > 0: print("%s %s scenarios" % (str(sense), str(scenario_count))) # initialize Result.status = 'starting at ' + datetime_string() if verbosity > 0: print(Result.status) ScenarioList = [] lambdaval = 0. lagrUtil.Set_ParmValue(ph, multName, lambdaval) # IMPORTANT: Preprocess the scenario instances # before fixing variables, otherwise they # will be preprocessed out of the expressions # and the output_fixed_variable_bounds option # will have no effect when we update the # fixed variable values (and then assume we # do not need to preprocess again because # of this option). ph._preprocess_scenario_instances() sumprob = 0. minprob = 1. maxprob = 0. # fixed = 0 to get PR point at b=0 lagrUtil.FixAllIndicatorVariables(ph, IndVarName, 0) for scenario in rootnode._scenarios: instance = ph._instances[scenario._name] sname = scenario._name sprob = scenario._probability sumprob = sumprob + sprob minprob = min(minprob, sprob) maxprob = max(maxprob, sprob) ScenarioList.append([sname, sprob]) ScenarioList.sort( key=operator.itemgetter(1)) # sorts from min to max probability if verbosity > 0: print("probabilities sum to %f range: %f to %f" % (sumprob, minprob, maxprob)) Result.ScenarioList = ScenarioList # Write ScenarioList = name, probability in csv file sorted by probability outName = csvPrefix + 'ScenarioList.csv' print("writing to %s" % outName) with open(outName, 'w') as outFile: for scenario in ScenarioList: outFile.write(scenario[0] + ", " + str(scenario[1]) + '\n') Result.ScenarioList = ScenarioList addstatus = 'Scenario List written to ' + csvPrefix + 'ScenarioList.csv' Result.status = Result.status + '\n' + addstatus if verbosity > 0: print(addstatus) if verbosity > 0: print("solve begins %s" % datetime_string()) print("\t- lambda = %f" % lambdaval) SolStat, zL = lagrUtil.solve_ph_code(ph, options) if verbosity > 0: print("solve ends %s" % datetime_string()) print("\t- status = %s" % str(SolStat)) print("\t- zL = %s" % str(zL)) bL = Compute_ExpectationforVariable(ph, IndVarName, CCStageNum) if bL > 0: print("** bL = %s > 0 (all %s = 0)" % (str(bL), str(IndVarName))) return Result if verbosity > 0: print("Initial optimal obj = %s for bL = %s" % (str(zL), str(bL))) # fixed = 1 to get PR point at b=1 lagrUtil.FixAllIndicatorVariables(ph, IndVarName, 1) if verbosity > 0: print("solve begins %s" % datetime_string()) print("\t- lambda = %s" % str(lambdaval)) SolStat, zU = lagrUtil.solve_ph_code(ph, options) if verbosity > 0: print("solve ends %s" % datetime_string()) print("\t- status = %s" % str(SolStat)) print("\t- zU = %s" % str(zU)) if not SolStat[0:2] == 'ok': print(str(SolStat[0:3]) + " is not 'ok'") addstatus = "** Solution is non-optimal...aborting" print(addstatus) Result.status = Result.status + "\n" + addstatus return Result bU = Compute_ExpectationforVariable(ph, IndVarName, CCStageNum) if bU < 1. - betaTol and verbosity > 0: print("** Warning: bU = %s < 1" % str(bU)) ### enumerate points in PR space (all but one scenario) # Result.lbz = [ [0,bL,zL], [None,bU,zU] ] # for scenario in rootnode._scenarios: # sname = scenario._name # instance = ph._instances[sname] # print "excluding scenario",sname # getattr(instance,IndVarName).value = 0 # print sname,"value =",getattr(instance,IndVarName).value,getattr(instance,IndVarName).fixed # SolStat, z = lagrUtil.solve_ph_code(ph, options) # b = Compute_ExpectationforVariable(ph, IndVarName, CCStageNum) # print "solve ends with status =",SolStat,"(b, z) =",b,z # getattr(instance,IndVarName).value = 1 # Result.lbz.append([None,b,z]) # for t in instance.TimePeriods: # print "Global at",t,"=",instance.posGlobalLoadGenerateMismatch[t].value, \ # '-',instance.negGlobalLoadGenerateMismatch[t].value,"=",\ # instance.GlobalLoadGenerateMismatch[t].value,\ # "\tDemand =",instance.TotalDemand[t].value, ",",\ # "Reserve =",instance.ReserveRequirement[t].value # # PrintPRpoints(Result.lbz) # return Result #### end enumeration ######################################################################## if verbosity > 1: print("We have bU = %s ...about to free all %s for %d scenarios" % \ (str(bU), str(IndVarName), len(ScenarioList))) # free scenario selection variable lagrUtil.FreeAllIndicatorVariables(ph, IndVarName) if verbosity > 1: print("\tall %s freed; elapsed time = %f" % (str(IndVarName), time.time() - STARTTIME)) # initialize with the two endpoints Result.lbz = [[0., bL, zL], [None, bU, zU]] Result.selections = [[], ScenarioList] NumIntervals = 1 if verbosity > 0: print("Initial relative Lagrangian gap = %f maxIntervals = %d" % (1 - zL / zU, maxIntervals)) if verbosity > 1: print("entering while loop %s" % datetime_string()) print("\n") ############ main loop to search intervals ############# ######################################################## while NumIntervals < maxIntervals: lapsedTime = time.time() - STARTTIME if lapsedTime > maxTime: addstatus = '** max time reached ' + str(lapsedTime) print(addstatus) Result.status = Result.status + '\n' + addstatus break if verbosity > 1: print("Top of while with %d intervals elapsed time = %f" % (NumIntervals, lapsedTime)) PrintPRpoints(Result.lbz) lambdaval = None ### loop over PR points to find first unfathomed interval to search ### for PRpoint in range(1, len(Result.lbz)): if Result.lbz[PRpoint][0] == None: # multiplier = None means interval with upper endpoint at PRpoint not fathomed bL = Result.lbz[PRpoint - 1][1] zL = Result.lbz[PRpoint - 1][2] bU = Result.lbz[PRpoint][1] zU = Result.lbz[PRpoint][2] lambdaval = (zU - zL) / (bU - bL) break ############################# # Exited from the for loop if verbosity > 1: print("exited for loop with PRpoint = %s ...lambdaval = %s" % (PRpoint, lambdaval)) if lambdaval == None: break # all intervals are fathomed if verbosity > 1: PrintPRpoints(Result.lbz) if verbosity > 0: print("Searching for b in [%s, %s] with %s = %f" % (str( round(bL, 4)), str(round(bU, 4)), multName, lambdaval)) # search interval (bL,bU) lagrUtil.Set_ParmValue(ph, multName, lambdaval) if verbosity > 0: print("solve begins %s" % datetime_string()) print("\t- %s = %f" % (multName, lambdaval)) ######################################################### SolStat, Lagrangian = lagrUtil.solve_ph_code(ph, options) ######################################################### if not SolStat[0:2] == 'ok': addstatus = "** Solution status " + SolStat + " is not optimal" print(addstatus) Result.status = Result.status + "\n" + addstatus return Result b = Compute_ExpectationforVariable(ph, IndVarName, CCStageNum) z = Lagrangian + lambdaval * b if verbosity > 0: print("solve ends %s" % datetime_string()) print("\t- Lagrangian = %f" % Lagrangian) print("\t- b = %s" % str(b)) print("\t- z = %s" % str(z)) print("\n") # We have PR point (b,z), which may be new or one of the endpoints ################################################################## ######### Begin tolerance tests ########## # Test that b is in [bL,bU] if verbosity > 1: print("\ttesting b") if b < bL - betaTol or b > bU + betaTol: addstatus = "** fatal error: probability (= " + str(b) + \ ") is outside interval, (" + str(bL) + ", " + str(bU) + ")" addstatus = addstatus + "\n\t(tolerance = " + str( betaTol) + ")" print(addstatus + '\n') Result.status = Result.status + addstatus return Result # Test that z is in [zL,zU] if verbosity > 1: print("\ttesting z") # using optTol as absolute tolerance (not relative) # ...if we reconsider, need to allow negative z-values if z < zL - optTol or z > zU + optTol: addstatus = "** fatal error: obj (= " + str(z) + \ ") is outside interval, (" + str(zL) + ", " + str(zU) + ")" print(addstatus + '\n') Result.status = Result.status + addstatus return Result # Ok, we have (b,z) in [(bL,zL), (bU,zU)], at least within tolerances oldLagrangian = zL - lambdaval * bL # ensure lambdaval set such that endpoints have same Lagrangian value # (this is probably unnecessary, but check anyway) if abs(oldLagrangian - (zU - lambdaval * bU)) > optTol * abs(oldLagrangian): addstatus = "** fatal error: Lagrangian at (bL,zL) = " + \ str(oldLagrangian) + " not= " + str(zU-lambdaval*bU) + \ "\n\t(optTol = " + str(optTol) + ")" Result.status = Result.status + addstatus return Result # no more fatal error tests...need to know if (b,z) is endpoint or new if verbosity > 1: print("No anomalies...testing if b = bL or bU") # Test if endpoint is an alternative optimum of Lagrangian # ...using optTol as *relative* tolerance # (could use other reference values -- eg, avg or max of old and new Lagrangian values) refValue = max(min(abs(oldLagrangian), abs(Lagrangian)), 1.) alternativeOpt = abs(oldLagrangian - Lagrangian) <= optTol * refValue # alternativeOpt = True means we computed point (b,z) is alternative optimum such that: # case 1: (b,z) = endpoint, in which case we simply fathom [bL,bU] by setting PRpoint # to [lambdaval,bU,zU] (the numeric value of multiplier means fathomed) # case 2: (b,z) is new PR point on line segment, in which case we split into # [bL,b] and [b,bU], with both fathomed if verbosity > 1: print("oldLagrangian = %s" % str(oldLagrangian)) if alternativeOpt: print(":= Lagrangian = %s" % str(Lagrangian)) else: print("> Lagrangian = %s" % str(Lagrangian)) if alternativeOpt: # setting multiplier of (bU,zU) to a numeric fathoms the interval [bL,bU] Result.lbz[PRpoint][0] = lambdaval # test if (b,z) is an endpoint newPRpoint = abs(b - bL) > betaTol and abs(b - bU) > betaTol if not newPRpoint: # ...(b,z) is NOT an endpoint (or sufficiently close), so split and fathom if verbosity > 1: print("\tnot an endpoint\tlbz = %s" % str(Result.lbz[PRpoint])) if verbosity > 0: print("Lagangian solution is new PR point on line segment of (" \ + str(bL) + ", " + str(bU) +")") print( "\tsplitting (bL,bU) into (bL,b) and (b,bU), both fathomed" ) # note: else ==> b = bL or bU, so we do nothing, having already fathomed [bL,bU] # (b,z) is new PR point, so split interval (still in while loop) ########################################## # alternative optimum ==> split & fathom: (bL,b), (b,bU) if verbosity > 1: print("\talternativeOpt %s newPRpoint = %s" % (alternativeOpt, newPRpoint)) if newPRpoint: NumIntervals += 1 if alternativeOpt: if verbosity > 1: print("\tInsert [lambdaval,b,z] at %f" % PRpoint) Result.lbz = Insert([lambdaval, b, z], PRpoint, Result.lbz) addstatus = "Added PR point on line segment of envelope" if verbosity > 0: print(addstatus + '\n') else: if verbosity > 1: print("\tInsert [None,b,z] at %f" % PRpoint) Result.lbz = Insert([None, b, z], PRpoint, Result.lbz) addstatus = "new envelope extreme point added (interval split, not fathomed)" Result.status = Result.status + "\n" + addstatus if verbosity > 1: print("...after insertion:") PrintPRpoints(Result.lbz) # get the selections of new point (ie, scenarios for which delta=1) Selections = [] for scenario in ScenarioList: instance = ph._instances[scenario[0]] if getattr(instance, IndVarName).value == 1: Selections.append(scenario) Result.selections = Insert(Selections, PRpoint, Result.selections) if verbosity > 0: print("Interval "+str(PRpoint)+", ["+str(bL)+", "+str(bU)+ \ "] split at ("+str(b)+", "+str(z)+")") print("\tnew PR point has " + str(len(Selections)) + " selections") if verbosity > 1: print("test that selections list aligned with lbz") if not len(Result.lbz) == len(Result.selections): print("** fatal error: lbz not= selections") PrintPRpoints(Result.lbz) print("Result.selections:") for i in range(Result.selections): print("%d %f" % (i, Result.selections[i])) return Result # ok, we have split and/or fathomed interval if NumIntervals >= maxIntervals: # we are about to leave while loop due to... addstatus = "** terminating because number of intervals = " + \ str(NumIntervals) + " >= max = " + str(maxIntervals) if verbosity > 0: print(addstatus + '\n') Result.status = Result.status + "\n" + addstatus # while loop continues if verbosity > 1: print("bottom of while loop") PrintPRpoints(Result.lbz) ################################################### # end while NumIntervals < maxIntervals: # ^ this is indentation of while loop ################ end while loop ################### if verbosity > 1: print("\nend while loop...setting multipliers") for i in range(1, len(Result.lbz)): db = Result.lbz[i][1] - Result.lbz[i - 1][1] dz = Result.lbz[i][2] - Result.lbz[i - 1][2] if dz > 0: Result.lbz[i][0] = dz / db else: #print "dz =",dz," at ",i,": ",Result.lbz[i]," -",Result.lbz[i-1] Result.lbz[i][0] = 0 if verbosity > 0: PrintPRpoints(Result.lbz) addstatus = '\nLagrange multiplier search ends' + datetime_string() if verbosity > 0: print(addstatus + '\n') Result.status = Result.status + addstatus outName = csvPrefix + "PRoptimal.csv" with open(outName, 'w') as outFile: if verbosity > 0: print("writing PR points to " + outName + '\n') for lbz in Result.lbz: outFile.write(str(lbz[1]) + ", " + str(lbz[2]) + '\n') outName = csvPrefix + "OptimalSelections.csv" with open(outName, 'w') as outFile: if verbosity > 0: print("writing optimal selections for each PR point to " + csvPrefix + 'PRoptimal.csv\n') for selections in Result.selections: char = "" thisSelection = "" for slist in selections: if slist: thisSelection = thisSelection + char + slist[0] char = "," outFile.write(thisSelection + '\n') if verbosity > 0: print("\nReturning status:\n %s \n=======================" % Result.status) ################################ if verbosity > 2: print("\nAbout to return...Result attributes: %d" % len(inspect.getmembers(Result))) for attr in inspect.getmembers(Result): print(attr[0]) print("\n===========================================") # LagrangeParametric ends here return Result