示例#1
0
def detect_peaks_gcms_centroid(ms_experiment, parameters, debug=False):
    """
    Applicable to centroided experiments, also see https://abibuilder.informatik.uni-tuebingen.de/archive/openms/Documentation/nightly/html/a16103.html
    :param ms_experiment:
    :param parameters:
    :return:
    """
    print(f"Detecting peaks with {GCMSPeakDetectionMethod.CENTROIDED}")
    ff = oms.FeatureFinder()

    if not debug:
        ff.setLogType(oms.LogType.NONE)
    else:
        ff.setLogType(oms.LogType.CMD)

    # Run the feature finder
    name = "centroided"
    pdm_name = GCMSPeakDetectionMethod.CENTROIDED.name
    parameters['detection_mode'] = name
    parameters['pdm_name'] = pdm_name
    # name = parameters['detection_mode']
    features = oms.FeatureMap()
    seeds = oms.FeatureMap()
    ff_params = oms.FeatureFinder().getParameters(name)
    ff.run(name, ms_experiment, features, ff_params, seeds)
    # features.setUniqueIds()
    features.ensureUniqueId()
    fh = oms.FeatureXMLFile()
    feature_storage_path = f"{parameters['input_filename']}_output.featureXML"
    fh.store(feature_storage_path, features)
    parameters['feature_storage'] = feature_storage_path
    print("Found", features.size(), "features")
    return parameters
示例#2
0
    def run_ff(self,
               exp: ms.MSExperiment,
               type: str = 'centroided') -> ms.FeatureMap:
        """Runs an existing OpenMS feature finder on an experiment.

        Keyword arguments:
        exp: the experiment to run the existing feature finder on
        type: the name of the existing feature finder to run

        Returns: the features in the experiment.
        """
        if type == 'multiplex':
            return self.run_ffm(exp)

        ff = ms.FeatureFinder()
        ff.setLogType(ms.LogType.NONE)
        features, seeds = ms.FeatureMap(), ms.FeatureMap()

        params = ms.FeatureFinder().getParameters(
            type)  # default (Leon's) (modified)
        params.__setitem__(b'mass_trace:min_spectra', 7)  # 10 (5) (7)
        params.__setitem__(b'mass_trace:max_missing', 1)  # 1 (2) (1)
        params.__setitem__(b'seed:min_score', 0.65)  # 0.8 (0.5) (0.65)
        params.__setitem__(b'feature:min_score', 0.6)  # 0.7 (0.5) (0.6)

        exp.updateRanges()
        ff.run(type, exp, features, params, seeds)

        features.setUniqueIds()
        return features
示例#3
0
def run_feature_finder_centroided_on_experiment(input_map):
    """Function that runs FeatureFinderCentroided on the given input map.

    Args:
        input_map (MSExperiment): An OpenMS MSExperiment object.

    Returns:
        FeatureMap: A FeatureMap containing the found features from the given
        experiment.
    """
    # Load data
    input_map.updateRanges()

    ff = ms.FeatureFinder()
    ff.setLogType(ms.LogType.CMD)

    # Run the feature finder
    name = 'centroided'
    features = ms.FeatureMap()
    seeds = ms.FeatureMap()
    params = ms.FeatureFinder().getParameters(name)
    params.__setitem__(b'mass_trace:min_spectra', 5)
    params.__setitem__(b'mass_trace:max_missing', 2)
    params.__setitem__(b'seed:min_score', 0.5)
    params.__setitem__(b'feature:min_score', 0.5)
    ff.run(name, input_map, features, params, seeds)

    features.setUniqueIds()

    return features
示例#4
0
def detect_peaks_gcms_peak_picker_wavelet(ms_experiment, parameters):
    """
    Use isotop wavelet to process raw data - can perform poorly on centroided data
        https://abibuilder.informatik.uni-tuebingen.de/archive/openms/Documentation/nightly/html/a16159.html
    TODO use "corrected" intensity_type
    :param ms_experiment:
    :param parameters:
    :return:
    """
    #set estimate_peak_width to true

    # Run the feature finder
    name = "peak_picker_wavelet"
    parameters['detection_mode'] = name

    # outdated code in https://github.com/OpenMS/pyopenms-extra/blob/master/src/examples/peakpicker_scipyFFT.py

    # pick spectrum
    ff = oms.FeatureFinder()
    ff.setLogType(oms.LogType.NONE)

    algo_name = oms.FeatureFinderAlgorithmIsotopeWavelet().getProductName()
    # picker = oms.FeatureFinderAlgorithmIsotopeWavelet()

    feature_map = oms.FeatureMap()
    seeds = oms.FeatureMap()

    # seeds = FeatureMap()
    algo_params = ff.getParameters(algo_name)
    ff.run(algo_name, ms_experiment, feature_map, algo_params, seeds)
    feature_map.setUniqueIds()

    parameters = default_store_feature_xml(feature_map, parameters)

    return parameters
示例#5
0
    def setup_feature_finder(self):

        # setting up the FeatureFinder
        self.seeds = oms.FeatureMap()
        self.ff = oms.FeatureFinder()
        self.features = oms.FeatureMap()
        self.ff.setLogType(oms.LogType.CMD)
示例#6
0
    def set_feature_finder_param(self):

        self.ff_param = self.ff_param or {}

        self.ff_param = dict((
            param.encode('ascii') if hasattr(param, 'encode') else param,
            value,
        ) for param, value in iteritems(self.ff_param))

        extra_param = dict((
            (b'mass_trace:min_spectra', self.feature_min_spectra),
            (b'feature:min_rt_span', self.feature_min_rt_span),
            (b'feature:max_rt_span', self.feature_max_rt_span),
        ))

        extra_param.update(self.ff_param)

        self.ff_param = extra_param

        self.ff_type = oms.FeatureFinderAlgorithmPicked().getProductName()
        self.ff_param_oms = oms.FeatureFinder().getParameters(self.ff_type)
        all_param = self.ff_param_oms.keys()

        for param, value in iteritems(self.ff_param):

            if param not in all_param:

                self._log('Warning: unknown parameter for '
                          'pyopenms.FeatureFinder: `%s`' %
                          param.decode('ascii'))

                continue

            self.ff_param_oms.setValue(param, value)
示例#7
0
def run_featurefinder_centroided(input_map, params, seeds, out_path):

    ff = pms.FeatureFinder()
    ff.setLogType(pms.LogType.CMD)

    features = pms.FeatureMap()
    name = pms.FeatureFinderAlgorithmPicked.getProductName()
    ff.run(name, input_map, features, params, seeds)

    fh = pms.FeatureXMLFile()
    fh.store(out_path, features)
示例#8
0
    def mgf(self):
        """
        Opens an mzML file.
        """

        options = oms.PeakFileOptions()
        options.setMSLevels([2])
        self.mzml = oms.MzMLFile()
        self.mzml.setOptions(options)
        self.exp = oms.MSExperiment()
        self.mzml.load(self.fname, self.exp)
        self.feature_finder = oms.FeatureFinder()
        self.ffname = 'centroided'
        self.features = oms.FeatureMap()
        self.seeds = oms.FeatureMap()
        self.params = oms.FeatureFinder().getParameters(self.ffname)
        self.feature_finder.run(
            self.ffname,
            self.exp,
            self.features,
            self.params,
            self.seeds,
        )
        self.features.setUniqueIds()
示例#9
0
def detect_peaks_gcms_isotopewavelet(ms_experiment, parameters, debug=False):
    """
    Use isotop wavelet to process raw data - can perform poorly on centroided data
        - also see https://abibuilder.informatik.uni-tuebingen.de/archive/openms/Documentation/nightly/html/a16105.html
    TODO use "corrected" intensity_type
    :param ms_experiment:
    :param parameters:
    :return:
    """
    print(f"Detecting peaks with {GCMSPeakDetectionMethod.ISOTOPEWAVELET}")
    ff = oms.FeatureFinder()
    if not debug:
        ff.setLogType(oms.LogType.NONE)
    else:
        ff.setLogType(oms.LogType.CMD)

    # Run the feature finder
    name = "isotope_wavelet"
    pdm_name = GCMSPeakDetectionMethod.ISOTOPEWAVELET.name
    parameters['detection_mode'] = name
    parameters['pdm_name'] = pdm_name
    # name = parameters['detection_mode']
    features = oms.FeatureMap()
    seeds = oms.FeatureMap()
    ff_params = ff.getParameters(name)

    # complains about "the extremal length of the wavelet is larger (47661) than the number of data points"
    # wavelet_length is defined by mz_cutoff / min_spacing
    # hr_data must be true if high-resolution data (orbitrap, FTICR)
    # hr_data parameter for isotopewavelet function
    is_hr_data = parameters.get("hr_data", False)
    if is_hr_data:
        hr_key = b"hr_data"  # hr_data takes extremely long - >= 2h per measurement of (!)32MB - there are way larger spectra...
        ff_params.setValue(hr_key, b"true")

    ff.run(name, ms_experiment, features, ff_params, seeds)
    features.setUniqueIds()
    fh = oms.FeatureXMLFile()
    feature_storage_path = f"{parameters['input_filename']}_output.featureXML"
    fh.store(feature_storage_path, features)
    parameters['feature_storage'] = feature_storage_path
    print("Found", features.size(), "features")
    return parameters
示例#10
0
def testFeatureFinder():
    """
    @tests:
     FeatureFinder.__init__
     FeatureFinder.endProgress
     FeatureFinder.getLogType
     FeatureFinder.getParameters
     FeatureFinder.run
     FeatureFinder.setLogType
     FeatureFinder.setProgress
     FeatureFinder.startProgress
    """
    ff = pyopenms.FeatureFinder()
    name = pyopenms.FeatureFinderAlgorithmPicked.getProductName()
    ff.run(name, pyopenms.MSExperiment(), pyopenms.FeatureMap(),
           pyopenms.Param(), pyopenms.FeatureMap())

    _testProgressLogger(ff)

    p = ff.getParameters(name)
    _testParam(p)
示例#11
0
def run_featurefinder_centroided(input_path, params, seeds, out_path):

    fh = pms.MzMLFile()
    options = pms.PeakFileOptions()
    options.setMSLevels([1,1])
    fh.setOptions(options)
    input_map = pms.MSExperiment()
    fh.load(input_path, input_map)
    input_map.updateRanges()

    ff = pms.FeatureFinder()
    ff.setLogType(pms.LogType.CMD)

    features = pms.FeatureMap()
    name = pms.FeatureFinderAlgorithmPicked.getProductName()
    ff.run(name, input_map, features, params, seeds)

    features.setUniqueIds()
    addDataProcessing(features, params, pms.ProcessingAction.QUANTITATION)

    fh = pms.FeatureXMLFile()
    fh.store(out_path, features)
示例#12
0
def main():

    parser = argparse.ArgumentParser(description="FeatureFinderCentroided")
    parser.add_argument("-in",
                        action="store",
                        type=str,
                        dest="in_",
                        metavar="input_file",
                        )

    parser.add_argument("-seeds",
                        action="store",
                        type=str,
                        metavar="seeds_file",
                        )

    parser.add_argument("-out",
                        action="store",
                        type=str,
                        metavar="output_file",
                        )

    parser.add_argument("-ini",
                        action="store",
                        type=str,
                        metavar="ini_file",
                        )

    parser.add_argument("-dict_ini",
                        action="store",
                        type=str,
                        metavar="python_dict_ini_file",
                        )

    parser.add_argument("-write_ini",
                        action="store",
                        type=str,
                        metavar="ini_file",
                        )

    parser.add_argument("-write_dict_ini",
                        action="store",
                        type=str,
                        metavar="python_dict_ini_file",
                        )

    args = parser.parse_args()

    run_mode = args.in_ is not None and args.out is not None\
                and (args.ini is not None or args.dict_ini is not None)
    write_mode = args.write_ini is not None or args.write_dict_ini is not None
    ok = run_mode or write_mode
    if not ok:
        parser.error("either specify -in, -out and -(dict)ini for running "
                     "the peakpicker\nor -write(dict)ini for creating std "
                     "ini file")

    name = pms.FeatureFinderAlgorithmPicked.getProductName()
    defaults = pms.FeatureFinder().getParameters(name)

    write_requested = writeParamsIfRequested(args, defaults)

    if not write_requested:
        updateDefaults(args, defaults)

        seeds = pms.FeatureMap()
        if args.seeds:
            fh = pms.FeatureXMLFile()
            fh.load(args.seeds, seeds)

        run_featurefinder_centroided(args.in_, defaults, seeds, args.out)