示例#1
0
文件: go.py 项目: maggishaggy/pypath
 def get_basic_set(self):
     swissprots = set(
         dataio.all_uniprots(
             organism=self.organism, swissprot='yes'))
     return dict(
         filter(lambda x: x[0] in swissprots,
                getattr(self.annotation, self.aspect.lower()).iteritems()))
示例#2
0
    def load_uniprots(self):
        """
        Retrieves a set of all UniProt IDs to have a base set of the entire
        proteome.
        """

        self.uniprots = set(dataio.all_uniprots(organism=self.ncbi_tax_id))
示例#3
0
net.lists['dgb'] = uniqList(flatList([net.mapper.map_name(dgb, 'genesymbol', 'uniprot') \
    for dgb in dataio.get_dgidb()]))

net.lists['kin'] = uniqList(flatList([net.mapper.map_name(kin, 'genesymbol', 'uniprot') \
    for kin in dataio.get_kinases()]))

net.lists['tfs'] = uniqList(flatList([net.mapper.map_name(tf, 'ensg', 'uniprot') \
    for tf in dataio.get_tfcensus()['ensg']]))

net.lists['dis'] = uniqList(flatList([\
    net.mapper.map_name(dis['genesymbol'], 'genesymbol', 'uniprot') \
    for dis in dataio.get_disgenet()]))

# defining the proteome as the set of all human swissprot ids
console(':: Loading the human proteome')
proteome = dataio.all_uniprots(swissprot='yes')

fi = open(fisherFile, 'w')
# Fisher's exact test for enrichment of disease related proteins
# in OmniPath compared to their ratio in the whole proteome
console(':: Fisher\'s exact test for enrichment of disease related proteins in the network'\
    'compared to their abundance in the proteome')
contDisg = np.array([[len(proteome), net.graph.vcount()],
                     [
                         len(net.lists['dis']),
                         len([1 for v in net.graph.vs if len(v['dis']) > 0])
                     ]])
fi.write('Disease related proteins:\t%s\t%s\n' % stats.fisher_exact(contDisg))

# Fisher's exact test for enrichment of cancer driver proteins
# in OmniPath compared to their ratio in the whole proteome