示例#1
0
def init_dict():
    sciimg = np.ones((1000, 1000)).astype(float)
    # Slits
    left = np.full((1000, 3), 2, dtype=float)
    right = np.full((1000, 3), 8, dtype=float)
    left[:, 1] = 15.
    right[:, 1] = 21.
    left[:, 2] = 25.
    right[:, 2] = 31.
    slits = slittrace.SlitTraceSet(left,
                                   right,
                                   'MultiSlit',
                                   nspat=1000,
                                   PYP_SPEC='dummy')
    #
    sdict = dict(
        sciimg=sciimg,
        ivarraw=0.1 * np.ones_like(sciimg),
        skymodel=0.95 * np.ones_like(sciimg),
        objmodel=np.ones_like(sciimg),
        ivarmodel=0.05 * np.ones_like(sciimg),
        waveimg=1000 * np.ones_like(sciimg),
        bpmmask=np.ones_like(sciimg).astype(int),
        det=1,
        detector=None,
        slits=slits,
        tilts=np.ones_like(sciimg).astype(float),
        #tilts=wavetilts.WaveTilts(**test_wavetilts.instant_dict),
        sci_spat_flexure=3.5,
    )
    return sdict
示例#2
0
    def generate_mask(self):
        """Generate the mask of sky regions

        Returns:
            ndarray : Boolean mask containing sky regions
        """
        nreg = 0
        left_edg, righ_edg = np.zeros((self.nspec, 0)), np.zeros(
            (self.nspec, 0))
        spec_min, spec_max = np.array([]), np.array([])
        for sl in range(self._nslits):
            diff = self.slits_right[:, sl] - self.slits_left[:, sl]
            tmp = np.zeros(self._resolution + 2)
            tmp[1:-1] = self._skyreg[sl]
            wl = np.where(tmp[1:] > tmp[:-1])[0]
            wr = np.where(tmp[1:] < tmp[:-1])[0]
            for rr in range(wl.size):
                left = self.slits_left[:, sl] + wl[rr] * diff / (
                    self._resolution - 1.0)
                righ = self.slits_left[:, sl] + wr[rr] * diff / (
                    self._resolution - 1.0)
                left_edg = np.append(left_edg, left[:, np.newaxis], axis=1)
                righ_edg = np.append(righ_edg, righ[:, np.newaxis], axis=1)
                nreg += 1
                spec_min = np.append(spec_min, self.slits.specmin[sl])
                spec_max = np.append(spec_max, self.slits.specmax[sl])
        # Instantiate the regions
        regions = slittrace.SlitTraceSet(left_edg,
                                         righ_edg,
                                         self.pypeline,
                                         nspec=self.nspec,
                                         nspat=self.nspat,
                                         mask=self.slits.mask,
                                         specmin=spec_min,
                                         specmax=spec_max,
                                         binspec=self.slits.binspec,
                                         binspat=self.slits.binspat,
                                         pad=0)
        # Generate the mask, and return
        return (regions.slit_img(use_spatial=False) >= 0).astype(np.int)
示例#3
0
def init_dict():
    sciimg = np.ones((1000, 1000)).astype(float)
    # Slits
    left = np.full((1000, 3), 2, dtype=float)
    right = np.full((1000, 3), 8, dtype=float)
    left[:, 1] = 15.
    right[:, 1] = 21.
    left[:, 2] = 25.
    right[:, 2] = 31.
    slits = slittrace.SlitTraceSet(left,
                                   right,
                                   'MultiSlit',
                                   nspat=1000,
                                   PYP_SPEC='dummy')
    # Construct table of spectral flexure
    spec_flex_table = Table()
    spec_flex_table['spat_id'] = slits.spat_id
    spec_flex_table['sci_spec_flexure'] = np.zeros(left.shape[1])
    #
    sdict = dict(
        sciimg=sciimg,
        ivarraw=0.1 * np.ones_like(sciimg),
        skymodel=0.95 * np.ones_like(sciimg),
        objmodel=np.ones_like(sciimg),
        ivarmodel=0.05 * np.ones_like(sciimg),
        scaleimg=np.ones_like(sciimg),
        waveimg=1000 * np.ones_like(sciimg),
        bpmmask=np.ones_like(sciimg).astype(int),
        det=1,
        detector=None,
        slits=slits,
        tilts=np.ones_like(sciimg).astype(float),
        #tilts=wavetilts.WaveTilts(**test_wavetilts.instant_dict),
        sci_spat_flexure=3.5,
        sci_spec_flexure=spec_flex_table,
        vel_type='HELIOCENTRIC',
        vel_corr=1.0 + 1.0e-5)
    return sdict
示例#4
0
def test_wavecalib():
    "Fuss with the WaveCalib DataContainer"
    out_file = data_path('test_wavecalib.fits')
    if os.path.isfile(out_file):
        os.remove(out_file)
    # Pieces
    pypeitFit = fitting.PypeItFit(fitc=np.arange(5).astype(float),
                                  xval=np.linspace(1, 100., 100))
    # 2D fit
    pypeitFit2 = fitting.PypeItFit(fitc=np.linspace((1, 2), (10, 20), 10),
                                   xval=np.linspace(1, 100., 100),
                                   x2=np.linspace(1, 100., 100))
    waveFit = wv_fitting.WaveFit(232,
                                 pypeitfit=pypeitFit,
                                 pixel_fit=np.arange(10).astype(float),
                                 wave_fit=np.linspace(1., 10., 10))

    waveCalib = wavecalib.WaveCalib(wv_fits=np.asarray([waveFit]),
                                    nslits=1,
                                    spat_ids=np.asarray([232]),
                                    wv_fit2d=pypeitFit2)

    # Write
    waveCalib.to_file(out_file)

    # Read
    waveCalib2 = wavecalib.WaveCalib.from_file(out_file)

    # Test
    assert np.array_equal(waveCalib.spat_ids,
                          waveCalib2.spat_ids), 'Bad spat_ids'
    assert np.array_equal(waveCalib.wv_fits[0].pypeitfit.fitc,
                          waveCalib2.wv_fits[0].pypeitfit.fitc), 'Bad fitc'
    assert np.array_equal(waveCalib.wv_fit2d.xval, waveCalib2.wv_fit2d.xval)

    # Write again!
    waveCalib2.to_file(out_file, overwrite=True)

    # Finish
    os.remove(out_file)

    # With None (failed wave)
    spat_ids = np.asarray([232, 949])
    waveCalib3 = wavecalib.WaveCalib(wv_fits=np.asarray(
        [waveFit, wv_fitting.WaveFit(949)]),
                                     nslits=2,
                                     spat_ids=spat_ids,
                                     wv_fit2d=pypeitFit2)
    waveCalib3.to_file(out_file)
    waveCalib4 = wavecalib.WaveCalib.from_file(out_file)

    # Check masking
    slits = slittrace.SlitTraceSet(left_init=np.full((1000, 2), 2,
                                                     dtype=float),
                                   right_init=np.full((1000, 2),
                                                      8,
                                                      dtype=float),
                                   pypeline='MultiSlit',
                                   spat_id=spat_ids,
                                   nspat=2,
                                   PYP_SPEC='dummy')
    slits.mask_wvcalib(waveCalib3)
    assert slits.bitmask.flagged(slits.mask[1], flag='BADWVCALIB')

    # Finish
    os.remove(out_file)
示例#5
0
文件: coadd2d.py 项目: ninoc/PypeIt
    def create_pseudo_image(self, coadd_list):
        """
        ..todo.. see below

        THIS UNDOCUMENTED CODE PROBABLY SHOULD GENERATE AND RETURN
        STANDARD PYPEIT OBJCTS INSTEAD OF SOME UNDEFINED DICT"""


        # Masking
        # TODO -- Make this a method or something
        slits = self.stack_dict['slits_list'][0]
        reduce_bpm = (slits.mask > 0) & (np.invert(slits.bitmask.flagged(
            slits.mask, flag=slits.bitmask.exclude_for_reducing)))
        good_slits = np.where(np.invert(reduce_bpm))[0]

        nspec_vec = np.zeros(self.nslits,dtype=int)
        nspat_vec = np.zeros(self.nslits,dtype=int)
        for kk, cdict in enumerate(coadd_list):
            islit = good_slits[kk]
            nspec_vec[islit]=cdict['nspec']
            nspat_vec[islit]=cdict['nspat']

        # Determine the size of the pseudo image
        nspat_pad = 10
        nspec_pseudo = nspec_vec.max()
        nspat_pseudo = int(np.sum(nspat_vec) + (self.nslits + 1)*nspat_pad)  # Cast for SlitTraceSet
        spec_vec_pseudo = np.arange(nspec_pseudo)
        shape_pseudo = (nspec_pseudo, nspat_pseudo)
        imgminsky_pseudo = np.zeros(shape_pseudo)
        sciivar_pseudo = np.zeros(shape_pseudo)
        waveimg_pseudo = np.zeros(shape_pseudo)
        tilts_pseudo = np.zeros(shape_pseudo)
        spat_img_pseudo = np.zeros(shape_pseudo)
        nused_pseudo = np.zeros(shape_pseudo, dtype=int)
        inmask_pseudo = np.zeros(shape_pseudo, dtype=bool)
        wave_mid = np.zeros((nspec_pseudo, self.nslits))
        wave_mask = np.zeros((nspec_pseudo, self.nslits),dtype=bool)
        wave_min = np.zeros((nspec_pseudo, self.nslits))
        wave_max = np.zeros((nspec_pseudo, self.nslits))
        dspat_mid = np.zeros((nspat_pseudo, self.nslits))

        spat_left = nspat_pad
        slit_left = np.zeros((nspec_pseudo, self.nslits))
        slit_righ = np.zeros((nspec_pseudo, self.nslits))
        spec_min1 = np.zeros(self.nslits)
        spec_max1 = np.zeros(self.nslits)

        nspec_grid = self.wave_grid_mid.size
        for kk, coadd_dict in enumerate(coadd_list):
            islit = good_slits[kk]
            spat_righ = spat_left + nspat_vec[islit]
            ispec = slice(0,nspec_vec[islit])
            ispat = slice(spat_left,spat_righ)
            imgminsky_pseudo[ispec, ispat] = coadd_dict['imgminsky']
            sciivar_pseudo[ispec, ispat] = coadd_dict['sciivar']
            waveimg_pseudo[ispec, ispat] = coadd_dict['waveimg']
            tilts_pseudo[ispec, ispat] = coadd_dict['tilts']
            # spat_img_pseudo is the sub-pixel image position on the rebinned pseudo image
            inmask_pseudo[ispec, ispat] = coadd_dict['outmask']
            image_temp = (coadd_dict['dspat'] -  coadd_dict['dspat_mid'][0] + spat_left)*coadd_dict['outmask']
            spat_img_pseudo[ispec, ispat] = image_temp
            nused_pseudo[ispec, ispat] = coadd_dict['nused']
            wave_min[ispec, islit] = coadd_dict['wave_min']
            wave_max[ispec, islit] = coadd_dict['wave_max']
            wave_mid[ispec, islit] = coadd_dict['wave_mid']
            wave_mask[ispec, islit] = True
            # Fill in the rest of the wave_mid with the corresponding points in the wave_grid
            #wave_this = wave_mid[wave_mask[:,islit], islit]
            #ind_upper = np.argmin(np.abs(self.wave_grid_mid - wave_this.max())) + 1
            #if nspec_vec[islit] != nspec_pseudo:
            #    wave_mid[nspec_vec[islit]:, islit] = self.wave_grid_mid[ind_upper:ind_upper + (nspec_pseudo-nspec_vec[islit])]


            dspat_mid[ispat, islit] = coadd_dict['dspat_mid']
            slit_left[:,islit] = np.full(nspec_pseudo, spat_left)
            slit_righ[:,islit] = np.full(nspec_pseudo, spat_righ)
            spec_max1[islit] = nspec_vec[islit]-1
            spat_left = spat_righ + nspat_pad

        slits_pseudo \
                = slittrace.SlitTraceSet(slit_left, slit_righ, self.pypeline, nspat=nspat_pseudo,
                                         PYP_SPEC=self.spectrograph.name,
                                         specmin=spec_min1, specmax=spec_max1, ech_order=slits.ech_order)
                                         #master_key=self.stack_dict['master_key_dict']['trace'],
                                         #master_dir=self.master_dir)
        slitmask_pseudo = slits_pseudo.slit_img()
        # This is a kludge to deal with cases where bad wavelengths result in large regions where the slit is poorly sampled,
        # which wreaks havoc on the local sky-subtraction
        min_slit_frac = 0.70
        spec_min = np.zeros(self.nslits)
        spec_max = np.zeros(self.nslits)
        for slit_idx in good_slits:
            spat_id = slits_pseudo.spat_id[slit_idx]
            slit_width = np.sum(inmask_pseudo*(slitmask_pseudo == spat_id),axis=1)
            slit_width_img = np.outer(slit_width, np.ones(nspat_pseudo))
            med_slit_width = np.median(slit_width_img[slitmask_pseudo == spat_id])
            # TODO -- need inline docs
            nspec_eff = np.sum(slit_width > min_slit_frac*med_slit_width)
            nsmooth = int(np.fmax(np.ceil(nspec_eff*0.02),10))
            slit_width_sm = ndimage.filters.median_filter(slit_width, size=nsmooth, mode='reflect')
            igood = (slit_width_sm > min_slit_frac*med_slit_width)
            # TODO -- need inline docs
            spec_min[slit_idx] = spec_vec_pseudo[igood].min()
            spec_max[slit_idx] = spec_vec_pseudo[igood].max()
            bad_pix = (slit_width_img < min_slit_frac*med_slit_width) & (slitmask_pseudo == spat_id)
            inmask_pseudo[bad_pix] = False

        # Update slits_pseudo
        slits_pseudo.specmin = spec_min
        slits_pseudo.specmax = spec_max

        return dict(nspec=nspec_pseudo, nspat=nspat_pseudo, imgminsky=imgminsky_pseudo,
                    sciivar=sciivar_pseudo, inmask=inmask_pseudo, tilts=tilts_pseudo,
                    waveimg=waveimg_pseudo, spat_img=spat_img_pseudo, slits=slits_pseudo,
                    wave_mask=wave_mask, wave_mid=wave_mid, wave_min=wave_min, wave_max=wave_max)