def __init__(self): # Get it started super(MMTBINOSPECSpectrograph, self).__init__() self.spectrograph = 'mmt_binospec' self.telescope = telescopes.MMTTelescopePar() self.camera = 'BINOSPEC' self.numhead = 11
def __init__(self): # Get it started super(MMTBINOSPECSpectrograph, self).__init__() self.spectrograph = 'mmt_binospec' self.telescope = telescopes.MMTTelescopePar() self.camera = 'BINOSPEC' self.numhead = 11 self.detector = [ # Detector 1 pypeitpar.DetectorPar( dataext=1, specaxis=0, specflip=False, xgap=0., ygap=0., ysize=1., platescale=0.24, darkcurr=3.0, ##ToDO: To Be update saturation=65535., nonlinear=0.95, #ToDO: To Be update numamplifiers=4, gain=[1.085, 1.046, 1.042, 0.975], ronoise=[3.2] * 4, suffix='_01'), # Detector 2 pypeitpar.DetectorPar( dataext=2, specaxis=0, specflip=False, xgap=0., ygap=0., ysize=1., platescale=0.24, darkcurr=3.0, ##ToDO: To Be update saturation=65535., nonlinear=0.95, #ToDO: To Be update numamplifiers=4, gain=[1.028, 1.163, 1.047, 1.045], ronoise=[3.2] * 4, suffix='_02') ]
class MMTBlueChannelSpectrograph(spectrograph.Spectrograph): """ Child to handle MMT/Blue Channel specific code """ ndet = 1 name = 'mmt_bluechannel' telescope = telescopes.MMTTelescopePar() camera = 'Blue_Channel' supported = True def get_detector_par(self, hdu, det): """ Return metadata for the selected detector. Args: hdu (`astropy.io.fits.HDUList`_): The open fits file with the raw image of interest. det (:obj:`int`): 1-indexed detector number. Returns: :class:`~pypeit.images.detector_container.DetectorContainer`: Object with the detector metadata. """ header = hdu[0].header # Binning binning = self.get_meta_value(self.get_headarr(hdu), 'binning') # Detector 1 detector_dict = dict( binning=binning, det=1, dataext=0, specaxis=0, specflip=False, spatflip=False, xgap=0., ygap=0., ysize=1., platescale=0.3, darkcurr=header['DARKCUR'], saturation=65535., nonlinear=0.95, # need to look up and update mincounts=-1e10, numamplifiers=1, gain=np.atleast_1d(header['GAIN']), ronoise=np.atleast_1d(header['RDNOISE']), # note that the header entries use the binned sizes datasec=np.atleast_1d(header['DATASEC']), oscansec=np.atleast_1d(header['BIASSEC'])) return detector_container.DetectorContainer(**detector_dict) def init_meta(self): """ Define how metadata are derived from the spectrograph files. That is, this associates the ``PypeIt``-specific metadata keywords with the instrument-specific header cards using :attr:`meta`. """ self.meta = {} # Required (core) self.meta['ra'] = dict(ext=0, card='RA') self.meta['dec'] = dict(ext=0, card='DEC') self.meta['target'] = dict(ext=0, card='OBJECT') self.meta['decker'] = dict(ext=0, card='APERTURE') self.meta['dichroic'] = dict(ext=0, card='INSFILTE') self.meta['binning'] = dict(ext=0, card=None, compound=True) self.meta['mjd'] = dict(ext=0, card=None, compound=True) self.meta['exptime'] = dict(ext=0, card='EXPTIME') self.meta['airmass'] = dict(ext=0, card='AIRMASS') # Extras for config and frametyping self.meta['dispname'] = dict(ext=0, card='DISPERSE') self.meta['idname'] = dict(ext=0, card='IMAGETYP') # used for arc and continuum lamps self.meta['lampstat01'] = dict(ext=0, card=None, compound=True) def compound_meta(self, headarr, meta_key): """ Methods to generate metadata requiring interpretation of the header data, instead of simply reading the value of a header card. Args: headarr (:obj:`list`): List of `astropy.io.fits.Header`_ objects. meta_key (:obj:`str`): Metadata keyword to construct. Returns: object: Metadata value read from the header(s). """ if meta_key == 'binning': """ Binning in blue channel headers is space-separated rather than comma-separated. """ binspec, binspatial = headarr[0]['CCDSUM'].split() binning = parse.binning2string(binspec, binspatial) return binning elif meta_key == 'mjd': """ Need to combine 'DATE-OBS' and 'UT' headers and then use astropy to make an mjd. """ date = headarr[0]['DATE-OBS'] ut = headarr[0]['UT'] ttime = Time(f"{date}T{ut}", format='isot') return ttime.mjd elif meta_key == 'lampstat01': """ If the comparison mirror is in, there will be a 'COMPLAMP' header entry containing the lamps that are turned on. However, if the comparison mirror is out, then this header entry doesn't exist. So need to test for it and set to 'Off' if it's not there. """ if 'COMPLAMP' in headarr[0]: return headarr[0]['COMPLAMP'] else: return 'off' msgs.error( f"Not ready for compound meta, {meta_key}, for MMT Blue Channel.") @classmethod def default_pypeit_par(cls): """ Return the default parameters to use for this instrument. Returns: :class:`~pypeit.par.pypeitpar.PypeItPar`: Parameters required by all of ``PypeIt`` methods. """ par = super().default_pypeit_par() # Wavelengths # 1D wavelength solution par['calibrations']['wavelengths']['rms_threshold'] = 0.5 par['calibrations']['wavelengths']['sigdetect'] = 5. par['calibrations']['wavelengths']['fwhm'] = 5.0 # HeNeAr is by far most commonly used, though ThAr is used for some situations. par['calibrations']['wavelengths']['lamps'] = [ 'ArI', 'ArII', 'HeI', 'NeI' ] par['calibrations']['wavelengths']['method'] = 'holy-grail' # Processing steps turn_off = dict(use_biasimage=False, use_darkimage=False) par.reset_all_processimages_par(**turn_off) # Extraction par['reduce']['skysub']['bspline_spacing'] = 0.8 par['reduce']['extraction']['sn_gauss'] = 4.0 ## Do not perform global sky subtraction for standard stars par['reduce']['skysub']['global_sky_std'] = False # cosmic ray rejection parameters for science frames par['scienceframe']['process']['sigclip'] = 5.0 par['scienceframe']['process']['objlim'] = 2.0 # Set the default exposure time ranges for the frame typing # Appropriate exposure times for Blue Channel can vary a lot depending # on grating and wavelength. E.g. 300 and 500 line gratings need very # short exposures for flats to avoid saturation, but the 1200 and 832 # can use much longer exposures due to the higher resolution and the # continuum lamp not being very bright in the blue/near-UV. par['calibrations']['pixelflatframe']['exprng'] = [None, 100] par['calibrations']['traceframe']['exprng'] = [None, 100] par['calibrations']['standardframe']['exprng'] = [None, 600] par['calibrations']['arcframe']['exprng'] = [10, None] par['calibrations']['darkframe']['exprng'] = [300, None] # less than 30 sec implies conditions are bright enough for scattered # light to be significant which affects the illumination of the slit. par['calibrations']['illumflatframe']['exprng'] = [30, None] # Need to specify this for long-slit data par['calibrations']['slitedges']['sync_predict'] = 'nearest' # Sensitivity function parameters par['sensfunc']['polyorder'] = 7 return par def bpm(self, filename, det, shape=None, msbias=None): """ Generate a default bad-pixel mask. Even though they are both optional, either the precise shape for the image (``shape``) or an example file that can be read to get the shape (``filename`` using :func:`get_image_shape`) *must* be provided. Args: filename (:obj:`str` or None): An example file to use to get the image shape. det (:obj:`int`): 1-indexed detector number to use when getting the image shape from the example file. shape (tuple, optional): Processed image shape Required if filename is None Ignored if filename is not None msbias (`numpy.ndarray`_, optional): Master bias frame used to identify bad pixels Returns: `numpy.ndarray`_: An integer array with a masked value set to 1 and an unmasked value set to 0. All values are set to 0. """ # Call the base-class method to generate the empty bpm bpm_img = super().bpm(filename, det, shape=shape, msbias=msbias) if det == 1: msgs.info("Using hard-coded BPM for Blue Channel") bpm_img[-1, :] = 1 else: msgs.error( f"Invalid detector number, {det}, for MMT Blue Channel (only one detector)." ) return bpm_img def configuration_keys(self): """ Return the metadata keys that define a unique instrument configuration. This list is used by :class:`~pypeit.metadata.PypeItMetaData` to identify the unique configurations among the list of frames read for a given reduction. Returns: :obj:`list`: List of keywords of data pulled from file headers and used to constuct the :class:`~pypeit.metadata.PypeItMetaData` object. """ return ['dispname'] def check_frame_type(self, ftype, fitstbl, exprng=None): """ Check for frames of the provided type. Args: ftype (:obj:`str`): Type of frame to check. Must be a valid frame type; see frame-type :ref:`frame_type_defs`. fitstbl (`astropy.table.Table`_): The table with the metadata for one or more frames to check. exprng (:obj:`list`, optional): Range in the allowed exposure time for a frame of type ``ftype``. See :func:`pypeit.core.framematch.check_frame_exptime`. Returns: `numpy.ndarray`_: Boolean array with the flags selecting the exposures in ``fitstbl`` that are ``ftype`` type frames. """ good_exp = framematch.check_frame_exptime(fitstbl['exptime'], exprng) if ftype == 'bias': return fitstbl['idname'] == 'zero' if ftype in ['science', 'standard']: return good_exp & (fitstbl['lampstat01'] == 'off') & (fitstbl['idname'] == 'object') if ftype in ['arc', 'tilt']: # should flesh this out to include all valid arc lamp combos return good_exp & (fitstbl['lampstat01'] != 'off') & ( fitstbl['idname'] == 'comp') & (fitstbl['decker'] != '5.0x180') if ftype in ['trace', 'pixelflat']: # i think the bright lamp, BC, is the only one ever used for this. imagetyp should always be set to flat. return good_exp & (fitstbl['lampstat01'] == 'BC') & (fitstbl['idname'] == 'flat') if ftype in ['illumflat']: # these can be set to flat or object depending if they're twilight or dark sky return good_exp & (fitstbl['idname'] in ['flat', 'object']) & ( fitstbl['lampstat01'] == 'off') msgs.warn('Cannot determine if frames are of type {0}.'.format(ftype)) return np.zeros(len(fitstbl), dtype=bool) def get_rawimage(self, raw_file, det): """ Read raw images and generate a few other bits and pieces that are key for image processing. Parameters ---------- raw_file : :obj:`str` File to read det : :obj:`int` 1-indexed detector to read Returns ------- detector_par : :class:`pypeit.images.detector_container.DetectorContainer` Detector metadata parameters. raw_img : `numpy.ndarray`_ Raw image for this detector. hdu : `astropy.io.fits.HDUList`_ Opened fits file exptime : :obj:`float` Exposure time read from the file header rawdatasec_img : `numpy.ndarray`_ Data (Science) section of the detector as provided by setting the (1-indexed) number of the amplifier used to read each detector pixel. Pixels unassociated with any amplifier are set to 0. oscansec_img : `numpy.ndarray`_ Overscan section of the detector as provided by setting the (1-indexed) number of the amplifier used to read each detector pixel. Pixels unassociated with any amplifier are set to 0. """ # Check for file; allow for extra .gz, etc. suffix fil = glob.glob(raw_file + '*') if len(fil) != 1: msgs.error("Found {:d} files matching {:s}".format(len(fil))) # Read FITS image msgs.info("Reading MMT Blue Channel file: {:s}".format(fil[0])) hdu = fits.open(fil[0]) hdr = hdu[0].header # we're flipping FITS x/y to pypeit y/x here. pypeit wants blue on the # bottom, slit bottom on the right... rawdata = np.fliplr(hdu[0].data.astype(float).transpose()) exptime = hdr['EXPTIME'] # TODO Store these parameters in the DetectorPar. # Number of amplifiers detector_par = self.get_detector_par(hdu, det if det is None else 1) numamp = detector_par['numamplifiers'] # First read over the header info to determine the size of the output array... datasec = hdr['DATASEC'] xdata1, xdata2, ydata1, ydata2 = np.array( parse.load_sections(datasec, fmt_iraf=False)).flatten() # Get the overscan section biassec = hdr['BIASSEC'] xbias1, xbias2, ybias1, ybias2 = np.array( parse.load_sections(biassec, fmt_iraf=False)).flatten() # allocate output arrays and fill in with mask values rawdatasec_img = np.zeros_like(rawdata, dtype=int) oscansec_img = np.zeros_like(rawdata, dtype=int) # trim bad sections at beginning of data and bias sections rawdatasec_img[xdata1 + 2:xdata2, ydata1:ydata2 - 1] = 1 oscansec_img[xbias1 + 2:xbias2, ybias1:ybias2 - 1] = 1 return detector_par, rawdata, hdu, exptime, rawdatasec_img, oscansec_img
class MMTBINOSPECSpectrograph(spectrograph.Spectrograph): """ Child to handle MMT/BINOSPEC specific code """ ndet = 2 name = 'mmt_binospec' telescope = telescopes.MMTTelescopePar() camera = 'BINOSPEC' header_name = 'Binospec' supported = True def get_detector_par(self, det, hdu=None): """ Return metadata for the selected detector. Args: det (:obj:`int`): 1-indexed detector number. hdu (`astropy.io.fits.HDUList`_, optional): The open fits file with the raw image of interest. If not provided, frame-dependent parameters are set to a default. Returns: :class:`~pypeit.images.detector_container.DetectorContainer`: Object with the detector metadata. """ # Binning binning = '1,1' if hdu is None else self.get_meta_value(self.get_headarr(hdu), 'binning') # Detector 1 detector_dict1 = dict( binning = binning, det = 1, dataext = 1, specaxis = 0, specflip = False, spatflip = False, xgap = 0., ygap = 0., ysize = 1., platescale = 0.24, darkcurr = 3.0, #ToDO: To Be update saturation = 65535., nonlinear = 0.95, #ToDO: To Be update mincounts = -1e10, numamplifiers = 4, gain = np.atleast_1d([1.085,1.046,1.042,0.975]), ronoise = np.atleast_1d([3.2,3.2,3.2,3.2]), ) # Detector 2 detector_dict2 = detector_dict1.copy() detector_dict2.update(dict( det=2, dataext=2, gain=np.atleast_1d([1.028,1.115,1.047,1.045]), #ToDo: FW measures 1.115 for amp2 but 1.163 in IDL pipeline ronoise=np.atleast_1d([3.6,3.6,3.6,3.6]) )) # Instantiate detector_dicts = [detector_dict1, detector_dict2] return detector_container.DetectorContainer(**detector_dicts[det-1]) def init_meta(self): """ Define how metadata are derived from the spectrograph files. That is, this associates the ``PypeIt``-specific metadata keywords with the instrument-specific header cards using :attr:`meta`. """ self.meta = {} # Required (core) self.meta['ra'] = dict(ext=1, card='RA') self.meta['dec'] = dict(ext=1, card='DEC') self.meta['target'] = dict(ext=1, card='OBJECT') self.meta['decker'] = dict(ext=1, card=None, default='default') self.meta['dichroic'] = dict(ext=1, card=None, default='default') self.meta['binning'] = dict(ext=1, card='CCDSUM', compound=True) self.meta['mjd'] = dict(ext=1, card='MJD') self.meta['exptime'] = dict(ext=1, card='EXPTIME') self.meta['airmass'] = dict(ext=1, card='AIRMASS') # Extras for config and frametyping self.meta['dispname'] = dict(ext=1, card='DISPERS1') self.meta['idname'] = dict(ext=1, card='IMAGETYP') # used for arclamp self.meta['lampstat01'] = dict(ext=1, card='HENEAR') # used for flatlamp, SCRN is actually telescope status self.meta['lampstat02'] = dict(ext=1, card='SCRN') self.meta['instrument'] = dict(ext=1, card='INSTRUME') def compound_meta(self, headarr, meta_key): """ Methods to generate metadata requiring interpretation of the header data, instead of simply reading the value of a header card. Args: headarr (:obj:`list`): List of `astropy.io.fits.Header`_ objects. meta_key (:obj:`str`): Metadata keyword to construct. Returns: object: Metadata value read from the header(s). """ if meta_key == 'binning': binspatial, binspec = parse.parse_binning(headarr[1]['CCDSUM']) binning = parse.binning2string(binspec, binspatial) return binning @classmethod def default_pypeit_par(cls): """ Return the default parameters to use for this instrument. Returns: :class:`~pypeit.par.pypeitpar.PypeItPar`: Parameters required by all of ``PypeIt`` methods. """ par = super().default_pypeit_par() # Wavelengths # 1D wavelength solution par['calibrations']['wavelengths']['rms_threshold'] = 0.5 par['calibrations']['wavelengths']['sigdetect'] = 5. par['calibrations']['wavelengths']['fwhm']= 5.0 par['calibrations']['wavelengths']['lamps'] = ['ArI', 'ArII'] #par['calibrations']['wavelengths']['nonlinear_counts'] = self.detector[0]['nonlinear'] * self.detector[0]['saturation'] par['calibrations']['wavelengths']['method'] = 'holy-grail' # Tilt and slit parameters par['calibrations']['tilts']['tracethresh'] = 10.0 par['calibrations']['tilts']['spat_order'] = 6 par['calibrations']['tilts']['spec_order'] = 6 par['calibrations']['slitedges']['sync_predict'] = 'nearest' # Processing steps turn_off = dict(use_biasimage=False, use_darkimage=False) par.reset_all_processimages_par(**turn_off) # Extraction par['reduce']['skysub']['bspline_spacing'] = 0.8 par['reduce']['extraction']['sn_gauss'] = 4.0 ## Do not perform global sky subtraction for standard stars par['reduce']['skysub']['global_sky_std'] = False # Flexure par['flexure']['spec_method'] = 'boxcar' # cosmic ray rejection parameters for science frames par['scienceframe']['process']['sigclip'] = 5.0 par['scienceframe']['process']['objlim'] = 2.0 # Set the default exposure time ranges for the frame typing par['calibrations']['standardframe']['exprng'] = [None, 100] par['calibrations']['arcframe']['exprng'] = [20, None] par['calibrations']['darkframe']['exprng'] = [20, None] par['scienceframe']['exprng'] = [20, None] # Sensitivity function parameters par['sensfunc']['polyorder'] = 7 par['sensfunc']['IR']['telgridfile'] = 'TelFit_MaunaKea_3100_26100_R20000.fits' return par def bpm(self, filename, det, shape=None, msbias=None): """ Generate a default bad-pixel mask. Even though they are both optional, either the precise shape for the image (``shape``) or an example file that can be read to get the shape (``filename`` using :func:`get_image_shape`) *must* be provided. Args: filename (:obj:`str` or None): An example file to use to get the image shape. det (:obj:`int`): 1-indexed detector number to use when getting the image shape from the example file. shape (tuple, optional): Processed image shape Required if filename is None Ignored if filename is not None msbias (`numpy.ndarray`_, optional): Master bias frame used to identify bad pixels Returns: `numpy.ndarray`_: An integer array with a masked value set to 1 and an unmasked value set to 0. All values are set to 0. """ # Call the base-class method to generate the empty bpm bpm_img = super().bpm(filename, det, shape=shape, msbias=msbias) if det == 1: msgs.info("Using hard-coded BPM for det=1 on BINOSPEC") # TODO: Fix this # Get the binning hdu = io.fits_open(filename) binning = hdu[1].header['CCDSUM'] hdu.close() # Apply the mask xbin, ybin = int(binning.split(' ')[0]), int(binning.split(' ')[1]) bpm_img[2447 // xbin, 2056 // ybin:4112 // ybin] = 1 bpm_img[2111 // xbin, 2056 // ybin:4112 // ybin] = 1 elif det == 2: msgs.info("Using hard-coded BPM for det=2 on BINOSPEC") # Get the binning hdu = io.fits_open(filename) binning = hdu[5].header['CCDSUM'] hdu.close() # Apply the mask xbin, ybin = int(binning.split(' ')[0]), int(binning.split(' ')[1]) #ToDo: Need to double check the BPM for detector 2 ## Identified by FW from flat observations bpm_img[3336 // xbin, 0:2056 // ybin] = 1 bpm_img[3337 // xbin, 0:2056 // ybin] = 1 bpm_img[4056 // xbin, 0:2056 // ybin] = 1 bpm_img[3011 // xbin, 2057 // ybin:4112 // ybin] = 1 ## Got from IDL pipeline #bpm_img[2378 // xbin, 0:2056 // ybin] = 1 #bpm_img[2096 // xbin, 2057 // ybin:4112 // ybin] = 1 #bpm_img[1084 // xbin, 0:2056 // ybin] = 1 return bpm_img def configuration_keys(self): """ Return the metadata keys that define a unique instrument configuration. This list is used by :class:`~pypeit.metadata.PypeItMetaData` to identify the unique configurations among the list of frames read for a given reduction. Returns: :obj:`list`: List of keywords of data pulled from file headers and used to constuct the :class:`~pypeit.metadata.PypeItMetaData` object. """ return ['dispname'] def check_frame_type(self, ftype, fitstbl, exprng=None): """ Check for frames of the provided type. Args: ftype (:obj:`str`): Type of frame to check. Must be a valid frame type; see frame-type :ref:`frame_type_defs`. fitstbl (`astropy.table.Table`_): The table with the metadata for one or more frames to check. exprng (:obj:`list`, optional): Range in the allowed exposure time for a frame of type ``ftype``. See :func:`pypeit.core.framematch.check_frame_exptime`. Returns: `numpy.ndarray`_: Boolean array with the flags selecting the exposures in ``fitstbl`` that are ``ftype`` type frames. """ good_exp = framematch.check_frame_exptime(fitstbl['exptime'], exprng) if ftype == 'science': return good_exp & (fitstbl['lampstat01'] == 'off') & (fitstbl['lampstat02'] == 'stowed') & (fitstbl['exptime'] > 100.0) if ftype == 'standard': return good_exp & (fitstbl['lampstat01'] == 'off') & (fitstbl['lampstat02'] == 'stowed') & (fitstbl['exptime'] <= 100.0) if ftype in ['arc', 'tilt']: return good_exp & (fitstbl['lampstat01'] == 'on') if ftype in ['pixelflat', 'trace', 'illumflat']: return good_exp & (fitstbl['lampstat01'] == 'off') & (fitstbl['lampstat02'] == 'deployed') msgs.warn('Cannot determine if frames are of type {0}.'.format(ftype)) return np.zeros(len(fitstbl), dtype=bool) def get_rawimage(self, raw_file, det): """ Read raw images and generate a few other bits and pieces that are key for image processing. Parameters ---------- raw_file : :obj:`str` File to read det : :obj:`int` 1-indexed detector to read Returns ------- detector_par : :class:`pypeit.images.detector_container.DetectorContainer` Detector metadata parameters. raw_img : `numpy.ndarray`_ Raw image for this detector. hdu : `astropy.io.fits.HDUList`_ Opened fits file exptime : :obj:`float` Exposure time read from the file header rawdatasec_img : `numpy.ndarray`_ Data (Science) section of the detector as provided by setting the (1-indexed) number of the amplifier used to read each detector pixel. Pixels unassociated with any amplifier are set to 0. oscansec_img : `numpy.ndarray`_ Overscan section of the detector as provided by setting the (1-indexed) number of the amplifier used to read each detector pixel. Pixels unassociated with any amplifier are set to 0. """ # Check for file; allow for extra .gz, etc. suffix fil = glob.glob(raw_file + '*') if len(fil) != 1: msgs.error("Found {:d} files matching {:s}".format(len(fil))) # Read msgs.info("Reading BINOSPEC file: {:s}".format(fil[0])) hdu = io.fits_open(fil[0]) head1 = hdu[1].header # TOdO Store these parameters in the DetectorPar. # Number of amplifiers detector_par = self.get_detector_par(det if det is not None else 1, hdu=hdu) numamp = detector_par['numamplifiers'] # get the x and y binning factors... binning = head1['CCDSUM'] xbin, ybin = [int(ibin) for ibin in binning.split(' ')] # First read over the header info to determine the size of the output array... datasec = head1['DATASEC'] x1, x2, y1, y2 = np.array(parse.load_sections(datasec, fmt_iraf=False)).flatten() nxb = x1 - 1 # determine the output array size... nx = (x2 - x1 + 1) * int(numamp/2) + nxb * int(numamp/2) ny = (y2 - y1 + 1) * int(numamp/2) #datasize = head1['DETSIZE'] #_, nx, _, ny = np.array(parse.load_sections(datasize, fmt_iraf=False)).flatten() # allocate output array... array = np.zeros((nx, ny)) rawdatasec_img = np.zeros_like(array, dtype=int) oscansec_img = np.zeros_like(array, dtype=int) if det == 1: # A DETECTOR order = range(1, 5, 1) elif det == 2: # B DETECTOR order = range(5, 9, 1) # insert extensions into master image... for kk, jj in enumerate(order): # grab complete extension... data, overscan, datasec, biassec = binospec_read_amp(hdu, jj) # insert components into output array... inx = data.shape[0] xs = inx * kk xe = xs + inx iny = data.shape[1] ys = iny * kk yn = ys + iny b1, b2, b3, b4 = np.array(parse.load_sections(biassec, fmt_iraf=False)).flatten() if kk == 0: array[b2:inx+b2,:iny] = data #*1.028 rawdatasec_img[b2:inx+b2,:iny] = kk + 1 array[:b2,:iny] = overscan oscansec_img[2:b2,:iny] = kk + 1 elif kk == 1: array[b2+inx:2*inx+b2,:iny] = np.flipud(data) #* 1.115 rawdatasec_img[b2+inx:2*inx+b2:,:iny] = kk + 1 array[2*inx+b2:,:iny] = overscan oscansec_img[2*inx+b2:,:iny] = kk + 1 elif kk == 2: array[b2+inx:2*inx+b2,iny:] = np.fliplr(np.flipud(data)) #* 1.047 rawdatasec_img[b2+inx:2*inx+b2,iny:] = kk + 1 array[2*inx+b2:, iny:] = overscan oscansec_img[2*inx+b2:, iny:] = kk + 1 elif kk == 3: array[b2:inx+b2,iny:] = np.fliplr(data) #* 1.045 rawdatasec_img[b2:inx+b2,iny:] = kk + 1 array[:b2,iny:] = overscan oscansec_img[2:b2,iny:] = kk + 1 # Need the exposure time exptime = hdu[self.meta['exptime']['ext']].header[self.meta['exptime']['card']] # Return, transposing array back to orient the overscan properly return detector_par, np.fliplr(np.flipud(array)), hdu, exptime, np.fliplr(np.flipud(rawdatasec_img)), \ np.fliplr(np.flipud(oscansec_img))
class MMTMMIRSSpectrograph(spectrograph.Spectrograph): """ Child to handle MMT/MMIRS specific code """ ndet = 1 name = 'mmt_mmirs' telescope = telescopes.MMTTelescopePar() camera = 'MMIRS' supported = True def init_meta(self): """ Define how metadata are derived from the spectrograph files. That is, this associates the ``PypeIt``-specific metadata keywords with the instrument-specific header cards using :attr:`meta`. """ self.meta = {} # Required (core) self.meta['ra'] = dict(ext=1, card='RA') self.meta['dec'] = dict(ext=1, card='DEC') self.meta['target'] = dict(ext=1, card='OBJECT') self.meta['decker'] = dict(ext=1, card='APERTURE') self.meta['dichroic'] = dict(ext=1, card='FILTER') self.meta['binning'] = dict(ext=1, card=None, default='1,1') self.meta['mjd'] = dict(ext=0, card=None, compound=True) self.meta['exptime'] = dict(ext=1, card='EXPTIME') self.meta['airmass'] = dict(ext=1, card='AIRMASS') # Extras for config and frametyping self.meta['dispname'] = dict(ext=1, card='DISPERSE') self.meta['idname'] = dict(ext=1, card='IMAGETYP') def compound_meta(self, headarr, meta_key): """ Methods to generate metadata requiring interpretation of the header data, instead of simply reading the value of a header card. Args: headarr (:obj:`list`): List of `astropy.io.fits.Header`_ objects. meta_key (:obj:`str`): Metadata keyword to construct. Returns: object: Metadata value read from the header(s). """ # TODO: This should be how we always deal with timeunit = 'isot'. Are # we doing that for all the relevant spectrographs? if meta_key == 'mjd': time = headarr[1]['DATE-OBS'] ttime = Time(time, format='isot') return ttime.mjd msgs.error("Not ready for this compound meta") def get_detector_par(self, hdu, det): """ Return metadata for the selected detector. Args: hdu (`astropy.io.fits.HDUList`_): The open fits file with the raw image of interest. det (:obj:`int`): 1-indexed detector number. Returns: :class:`~pypeit.images.detector_container.DetectorContainer`: Object with the detector metadata. """ # Detector 1 detector_dict = dict( binning='1,1', det=1, dataext=1, specaxis=0, specflip=False, spatflip=False, platescale=0.2012, darkcurr=0.01, saturation=700000., #155400., nonlinear=1.0, mincounts=-1e10, numamplifiers=1, gain=np.atleast_1d(0.95), ronoise=np.atleast_1d(3.14), datasec=np.atleast_1d('[:,:]'), oscansec=np.atleast_1d('[:,:]')) return detector_container.DetectorContainer(**detector_dict) @classmethod def default_pypeit_par(cls): """ Return the default parameters to use for this instrument. Returns: :class:`~pypeit.par.pypeitpar.PypeItPar`: Parameters required by all of ``PypeIt`` methods. """ par = super().default_pypeit_par() # Image processing steps turn_off = dict(use_illumflat=False, use_biasimage=False, use_overscan=False, use_darkimage=False) par.reset_all_processimages_par(**turn_off) #par['calibrations']['traceframe']['process']['use_darkimage'] = True #par['calibrations']['pixelflatframe']['process']['use_darkimage'] = True #par['calibrations']['illumflatframe']['process']['use_darkimage'] = True #par['scienceframe']['process']['use_darkimage'] = True par['scienceframe']['process']['use_illumflat'] = True # Wavelengths # 1D wavelength solution with arc lines par['calibrations']['wavelengths']['rms_threshold'] = 0.5 par['calibrations']['wavelengths']['sigdetect'] = 5 par['calibrations']['wavelengths']['fwhm'] = 5 par['calibrations']['wavelengths']['n_first'] = 2 par['calibrations']['wavelengths']['n_final'] = 4 par['calibrations']['wavelengths']['lamps'] = ['OH_NIRES'] par['calibrations']['wavelengths']['match_toler'] = 5.0 # Set slits and tilts parameters par['calibrations']['tilts']['tracethresh'] = 5 par['calibrations']['tilts']['spat_order'] = 7 par['calibrations']['tilts']['spec_order'] = 5 par['calibrations']['slitedges']['trace_thresh'] = 10. par['calibrations']['slitedges']['edge_thresh'] = 100. par['calibrations']['slitedges']['fit_min_spec_length'] = 0.4 par['calibrations']['slitedges']['sync_predict'] = 'nearest' # Set the default exposure time ranges for the frame typing par['calibrations']['standardframe']['exprng'] = [None, 60] par['calibrations']['tiltframe']['exprng'] = [60, None] par['calibrations']['arcframe']['exprng'] = [60, None] par['calibrations']['darkframe']['exprng'] = [30, None] par['scienceframe']['exprng'] = [30, None] # dark par['calibrations']['darkframe']['process']['apply_gain'] = True # cosmic ray rejection par['scienceframe']['process']['sigclip'] = 5.0 par['scienceframe']['process']['objlim'] = 2.0 par['scienceframe']['process']['grow'] = 0.5 # Science reduction par['reduce']['findobj']['sig_thresh'] = 5.0 par['reduce']['skysub']['sky_sigrej'] = 5.0 par['reduce']['findobj']['find_trim_edge'] = [5, 5] # Do not correct for flexure par['flexure']['spec_method'] = 'skip' # Sensitivity function parameters par['sensfunc']['algorithm'] = 'IR' par['sensfunc']['polyorder'] = 8 # ToDo: replace the telluric grid file for MMT site. par['sensfunc']['IR']['telgridfile'] \ = resource_filename('pypeit', '/data/telluric/TelFit_MaunaKea_3100_26100_R20000.fits') return par def config_specific_par(self, scifile, inp_par=None): """ Modify the ``PypeIt`` parameters to hard-wired values used for specific instrument configurations. Args: scifile (:obj:`str`): File to use when determining the configuration and how to adjust the input parameters. inp_par (:class:`~pypeit.par.parset.ParSet`, optional): Parameter set used for the full run of PypeIt. If None, use :func:`default_pypeit_par`. Returns: :class:`~pypeit.par.parset.ParSet`: The PypeIt parameter set adjusted for configuration specific parameter values. """ # Start with instrument wide par = super().config_specific_par(scifile, inp_par=inp_par) if (self.get_meta_value(scifile, 'dispname') == 'HK') and (self.get_meta_value( scifile, 'dichroic') == 'zJ'): par['calibrations']['wavelengths']['method'] = 'full_template' par['calibrations']['wavelengths'][ 'reid_arxiv'] = 'mmt_mmirs_HK_zJ.fits' elif (self.get_meta_value( scifile, 'dispname') == 'K3000') and (self.get_meta_value( scifile, 'dichroic') == 'Kspec'): par['calibrations']['wavelengths']['method'] = 'full_template' par['calibrations']['wavelengths'][ 'reid_arxiv'] = 'mmt_mmirs_K3000_Kspec.fits' elif (self.get_meta_value(scifile, 'dispname') == 'J') and (self.get_meta_value(scifile, 'dichroic') == 'zJ'): par['calibrations']['wavelengths']['method'] = 'full_template' par['calibrations']['wavelengths'][ 'reid_arxiv'] = 'mmt_mmirs_J_zJ.fits' return par def check_frame_type(self, ftype, fitstbl, exprng=None): """ Check for frames of the provided type. Args: ftype (:obj:`str`): Type of frame to check. Must be a valid frame type; see frame-type :ref:`frame_type_defs`. fitstbl (`astropy.table.Table`_): The table with the metadata for one or more frames to check. exprng (:obj:`list`, optional): Range in the allowed exposure time for a frame of type ``ftype``. See :func:`pypeit.core.framematch.check_frame_exptime`. Returns: `numpy.ndarray`_: Boolean array with the flags selecting the exposures in ``fitstbl`` that are ``ftype`` type frames. """ good_exp = framematch.check_frame_exptime(fitstbl['exptime'], exprng) if ftype in ['pinhole', 'bias']: # No pinhole or bias frames return np.zeros(len(fitstbl), dtype=bool) if ftype in ['pixelflat', 'trace', 'illumflat']: return good_exp & (fitstbl['idname'] == 'flat') if ftype == 'standard': return good_exp & (fitstbl['idname'] == 'object') if ftype == 'science': return good_exp & (fitstbl['idname'] == 'object') if ftype in ['arc', 'tilt']: return good_exp & (fitstbl['idname'] == 'object') if ftype == 'dark': return good_exp & (fitstbl['idname'] == 'dark') msgs.warn('Cannot determine if frames are of type {0}.'.format(ftype)) return np.zeros(len(fitstbl), dtype=bool) def bpm(self, filename, det, shape=None, msbias=None): """ Generate a default bad-pixel mask. Even though they are both optional, either the precise shape for the image (``shape``) or an example file that can be read to get the shape (``filename`` using :func:`get_image_shape`) *must* be provided. Args: filename (:obj:`str` or None): An example file to use to get the image shape. det (:obj:`int`): 1-indexed detector number to use when getting the image shape from the example file. shape (tuple, optional): Processed image shape Required if filename is None Ignored if filename is not None msbias (`numpy.ndarray`_, optional): Master bias frame used to identify bad pixels Returns: `numpy.ndarray`_: An integer array with a masked value set to 1 and an unmasked value set to 0. All values are set to 0. """ # Call the base-class method to generate the empty bpm bpm_img = super().bpm(filename, det, shape=shape, msbias=msbias) msgs.info("Using hard-coded BPM for det=1 on MMIRS") # Get the binning hdu = io.fits_open(filename) binning = hdu[1].header['CCDSUM'] hdu.close() # Apply the mask xbin, ybin = int(binning.split(' ')[0]), int(binning.split(' ')[1]) bpm_img[:, 187 // ybin] = 1 return bpm_img def get_rawimage(self, raw_file, det): """ Read raw images and generate a few other bits and pieces that are key for image processing. Parameters ---------- raw_file : :obj:`str` File to read det : :obj:`int` 1-indexed detector to read Returns ------- detector_par : :class:`pypeit.images.detector_container.DetectorContainer` Detector metadata parameters. raw_img : `numpy.ndarray`_ Raw image for this detector. hdu : `astropy.io.fits.HDUList`_ Opened fits file exptime : :obj:`float` Exposure time read from the file header rawdatasec_img : `numpy.ndarray`_ Data (Science) section of the detector as provided by setting the (1-indexed) number of the amplifier used to read each detector pixel. Pixels unassociated with any amplifier are set to 0. oscansec_img : `numpy.ndarray`_ Overscan section of the detector as provided by setting the (1-indexed) number of the amplifier used to read each detector pixel. Pixels unassociated with any amplifier are set to 0. """ # Check for file; allow for extra .gz, etc. suffix fil = glob.glob(raw_file + '*') if len(fil) != 1: msgs.error("Found {:d} files matching {:s}".format(len(fil))) # Read msgs.info("Reading MMIRS file: {:s}".format(fil[0])) hdu = io.fits_open(fil[0]) head1 = fits.getheader(fil[0], 1) detector_par = self.get_detector_par(hdu, det if det is None else 1) # get the x and y binning factors... binning = head1['CCDSUM'] xbin, ybin = [int(ibin) for ibin in binning.split(' ')] # First read over the header info to determine the size of the output array... datasec = head1['DATASEC'] x1, x2, y1, y2 = np.array(parse.load_sections( datasec, fmt_iraf=False)).flatten() # ToDo: I am currently using the standard double correlated frame, that is a difference between # the first and final read-outs. In the future need to explore up-the-ramp fitting. if len(hdu) > 2: data = mmirs_read_amp( hdu[1].data.astype('float64')) - mmirs_read_amp( hdu[2].data.astype('float64')) else: data = mmirs_read_amp(hdu[1].data.astype('float64')) array = data[x1 - 1:x2, y1 - 1:y2] ## ToDo: This is a hack. Need to solve this issue. I cut at 998 due to the HK zero order contaminating ## the blue part of the zJ+HK spectrum. For other setup, you do not need to cut the detector. if (head1['FILTER'] == 'zJ') and (head1['DISPERSE'] == 'HK'): array = array[:int(998 / ybin), :] rawdatasec_img = np.ones_like(array, dtype='int') oscansec_img = np.ones_like(array, dtype='int') # Need the exposure time exptime = hdu[self.meta['exptime']['ext']].header[self.meta['exptime'] ['card']] # Return, transposing array back to orient the overscan properly return detector_par, np.flipud(array), hdu, exptime, np.flipud(rawdatasec_img),\ np.flipud(np.flipud(oscansec_img))
def __init__(self): # Get it started super(MMTMMIRSSpectrograph, self).__init__() self.spectrograph = 'mmt_mmirs' self.telescope = telescopes.MMTTelescopePar() self.camera = 'MMIRS'