def format_values(self, values): unit = self.get_unit() return format_values(unit, values)
def test_calibrate_warmups(self, nwarmup, unit): half = nwarmup + (len(self.warmups) - nwarmup) // 2 sample1 = [value for loops, value in self.warmups[nwarmup:half]] sample2 = [value for loops, value in self.warmups[half:]] first_value = sample1[0] # test if the first value is an outlier values = sample1[1:] + sample2 q1 = percentile(values, 0.25) q3 = percentile(values, 0.75) iqr = q3 - q1 outlier_max = (q3 + 1.5 * iqr) # only check maximum, not minimum outlier = not(first_value <= outlier_max) mean1 = statistics.mean(sample1) mean2 = statistics.mean(sample2) mean_diff = (mean1 - mean2) / float(mean2) s1_q1 = percentile(sample1, 0.25) s2_q1 = percentile(sample2, 0.25) s1_q3 = percentile(sample1, 0.75) s2_q3 = percentile(sample2, 0.75) q1_diff = (s1_q1 - s2_q1) / float(s2_q1) q3_diff = (s1_q3 - s2_q3) / float(s2_q3) mad1 = median_abs_dev(sample1) mad2 = median_abs_dev(sample2) # FIXME: handle division by zero mad_diff = (mad1 - mad2) / float(mad2) if self.args.verbose: stdev1 = statistics.stdev(sample1) stdev2 = statistics.stdev(sample2) stdev_diff = (stdev1 - stdev2) / float(stdev2) sample1_str = format_values(unit, (s1_q1, mean1, s1_q3, stdev1, mad1)) sample2_str = format_values(unit, (s2_q1, mean2, s2_q3, stdev2, mad2)) print("Calibration: warmups=%s" % format_number(nwarmup)) print(" first value: %s, outlier? %s (max: %s)" % (format_value(unit, first_value), outlier, format_value(unit, outlier_max))) print(" sample1(%s): Q1=%s mean=%s Q3=%s stdev=%s MAD=%s" % (len(sample1), sample1_str[0], sample1_str[1], sample1_str[2], sample1_str[3], sample1_str[4])) print(" sample2(%s): Q1=%s mean=%s Q3=%s stdev=%s MAD=%s" % (len(sample2), sample2_str[0], sample2_str[1], sample2_str[2], sample2_str[3], sample2_str[4])) print(" diff: Q1=%+.0f%% mean=%+.0f%% Q3=%+.0f%% stdev=%+.0f%% MAD=%+.0f%%" % (q1_diff * 100, mean_diff * 100, q3_diff * 100, stdev_diff * 100, mad_diff * 100)) if outlier: return False if not(-0.5 <= mean_diff <= 0.10): return False if abs(mad_diff) > 0.10: return False if abs(q1_diff) > 0.05: return False if abs(q3_diff) > 0.05: return False return True