示例#1
0
def test_efficient_semivariance_vs_heuristic_weekly():
    benchmark = 0
    _, historic_returns = setup_efficient_semivariance(data_only=True)
    weekly_returns = historic_returns.resample("W").sum()
    mean_weekly_returns = weekly_returns.mean(axis=0)

    es = EfficientSemivariance(mean_weekly_returns,
                               weekly_returns,
                               frequency=52)
    es.efficient_return(0.20 / 52)
    mu_es, semi_deviation, _ = es.portfolio_performance()

    pairwise_semivariance = risk_models.semicovariance(weekly_returns,
                                                       returns_data=True,
                                                       benchmark=0,
                                                       frequency=1)
    ef = EfficientFrontier(mean_weekly_returns, pairwise_semivariance)
    ef.efficient_return(0.20 / 52)
    mu_ef, _, _ = ef.portfolio_performance()
    portfolio_returns = historic_returns @ ef.weights
    drops = np.fmin(portfolio_returns - benchmark, 0)
    T = weekly_returns.shape[0]
    semivariance = np.sum(np.square(drops)) / T * 52
    semi_deviation_ef = np.sqrt(semivariance)

    assert semi_deviation < semi_deviation_ef
    assert mu_es / semi_deviation > mu_ef / semi_deviation_ef
示例#2
0
def test_es_example_weekly():
    df = get_data()
    df = df.resample("W").first()
    mu = expected_returns.mean_historical_return(df, frequency=52)
    historical_rets = expected_returns.returns_from_prices(df).dropna()
    es = EfficientSemivariance(mu, historical_rets, frequency=52)
    es.efficient_return(0.2)
    np.testing.assert_allclose(
        es.portfolio_performance(),
        (0.2000000562544616, 0.07667633475531543, 2.3475307841574087),
        rtol=1e-4,
        atol=1e-4,
    )
def test_es_example_short():
    df = get_data()
    mu = expected_returns.mean_historical_return(df)
    historical_rets = expected_returns.returns_from_prices(df).dropna()
    es = EfficientSemivariance(mu, historical_rets, weight_bounds=(-1, 1))
    w = es.efficient_return(0.2, market_neutral=True)
    goog_weight = w["GOOG"]

    historical_rets["GOOG"] -= historical_rets["GOOG"].quantile(0.75)
    es = EfficientSemivariance(mu, historical_rets, weight_bounds=(-1, 1))
    w = es.efficient_return(0.2, market_neutral=True)
    goog_weight2 = w["GOOG"]
    assert abs(goog_weight2) >= abs(goog_weight)
示例#4
0
def test_es_example_monthly():
    df = get_data()
    df = df.resample("M").first()
    mu = expected_returns.mean_historical_return(df, frequency=12)
    historical_rets = expected_returns.returns_from_prices(df).dropna()
    es = EfficientSemivariance(mu, historical_rets, frequency=12)

    es.efficient_return(0.3)
    np.testing.assert_allclose(
        es.portfolio_performance(),
        (0.3, 0.04746519522734184, 5.899059271933824),
        rtol=1e-4,
        atol=1e-4,
    )
def test_es_return_sample():
    df = get_data()
    mu = expected_returns.mean_historical_return(df)
    S = risk_models.sample_cov(df)

    # Generate a 1y sample of daily data
    np.random.seed(0)
    mu_daily = (1 + mu)**(1 / 252) - 1
    S_daily = S / 252
    sample_rets = pd.DataFrame(np.random.multivariate_normal(
        mu_daily, S_daily, 300),
                               columns=mu.index)

    es = EfficientSemivariance(mu, sample_rets)
    w = es.efficient_return(0.2)

    assert isinstance(w, dict)
    assert set(w.keys()) == set(es.tickers)
    np.testing.assert_almost_equal(es.weights.sum(), 1)
    assert all([i >= -1e-5 for i in w.values()])

    np.testing.assert_allclose(
        es.portfolio_performance(),
        (0.20, 0.10050247458629837, 1.7910016727029479),
        rtol=1e-4,
        atol=1e-4,
    )
    # Cover verbose param case
    np.testing.assert_equal(es.portfolio_performance(verbose=True),
                            es.portfolio_performance())
def test_es_errors():
    df = get_data()
    mu = expected_returns.mean_historical_return(df)
    historical_rets = expected_returns.returns_from_prices(df)

    with pytest.warns(UserWarning):
        EfficientSemivariance(mu, historical_rets)

    historical_rets = historical_rets.dropna(axis=0, how="any")
    es = EfficientSemivariance(mu, historical_rets)

    with pytest.raises(NotImplementedError):
        es.min_volatility()

    with pytest.raises(NotImplementedError):
        es.max_sharpe()

    with pytest.raises(ValueError):
        # Must be > 0
        es.max_quadratic_utility(risk_aversion=-0.01)

    with pytest.raises(ValueError):
        # Must be > 0
        es.efficient_return(target_return=-0.01)

    with pytest.raises(ValueError):
        # Must be <= max expected return
        es.efficient_return(target_return=np.abs(mu).max() + 0.01)

    with pytest.raises(AttributeError):
        # list not supported.
        EfficientSemivariance(mu, historical_rets.to_numpy().tolist())

    historical_rets = historical_rets.iloc[:, :-1]
    with pytest.raises(ValueError):
        EfficientSemivariance(mu, historical_rets)
示例#7
0
def test_es_example():
    df = get_data()
    mu = expected_returns.mean_historical_return(df)
    historical_rets = expected_returns.returns_from_prices(df).dropna()

    es = EfficientSemivariance(mu, historical_rets)
    w = es.efficient_return(0.2)

    assert isinstance(w, dict)
    assert set(w.keys()) == set(es.tickers)
    np.testing.assert_almost_equal(es.weights.sum(), 1)
    assert all([i >= -1e-5 for i in w.values()])

    np.testing.assert_allclose(
        es.portfolio_performance(),
        (0.20, 0.08558991313395496, 2.1030523036993265),
        rtol=1e-4,
        atol=1e-4,
    )
示例#8
0
def test_efficient_return_short():
    es = EfficientSemivariance(*setup_efficient_semivariance(data_only=True),
                               weight_bounds=(None, None))
    w = es.efficient_return(0.25)
    assert isinstance(w, dict)
    assert set(w.keys()) == set(es.tickers)
    np.testing.assert_almost_equal(es.weights.sum(), 1)
    np.testing.assert_allclose(
        es.portfolio_performance(),
        (0.25, 0.09073654273906914, 2.534811096726317),
        rtol=1e-4,
        atol=1e-4,
    )
    sortino = es.portfolio_performance()[2]

    ef_long_only = setup_efficient_semivariance()
    ef_long_only.efficient_return(0.25)
    long_only_sortino = ef_long_only.portfolio_performance()[2]

    assert sortino > long_only_sortino