def main(): """Main function of the script. """ parser = argparse.ArgumentParser() parser.add_argument('name', help="The name of the SimulationResults file.") parser.add_argument('folder', help="The name of the second SimulationResults file.", nargs='?') args = parser.parse_args() name = args.name folder = args.folder # This will be None, if not provided results = SimulationResults.load_from_file(name) original_filename = results.original_filename # xxxxxxxxxx Remove the .pickle file extension xxxxxxxxxxxxxxxxxxxxxxxx # If partial_filename has a 'pickle' extension we remove it from the name original_filename_no_ext, ext = os.path.splitext(original_filename) if ext == '.pickle': original_filename = original_filename_no_ext # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx unpacked_params_list = results.params.get_unpacked_params_list() all_results_names = results.get_result_names() for i, p in enumerate(results.params.get_unpacked_params_list()): partial_filename = get_partial_results_filename( original_filename, p, folder) partial_filename_with_replacements = replace_dict_values( partial_filename, results.params.parameters, filename_mode=True) if partial_filename_with_replacements == name: raise RuntimeError('invalid name') partial_param = unpacked_params_list[i] partial_result = SimulationResults() partial_result.set_parameters(partial_param) for result_name in all_results_names: partial_result.add_result(results[result_name][i]) partial_result.current_rep = results.runned_reps[i] # Try to save the partial results. If we get an error try: # If we get an IOError exception here, maybe we are trying to # save to a folder and the folder does not exist yet. partial_result.save_to_file(partial_filename_with_replacements) except IOError as e: if folder is not None: # Lets create the folder... os.mkdir(folder) # ... and try to save the file again. partial_result.save_to_file(partial_filename_with_replacements) else: raise e
def _run_simulation(self, current_parameters): # pylint: disable=R0914,R0915 # xxxxxxxxxx Prepare the scenario for this iteration. xxxxxxxxxxxxx # This will create user in random positons and calculate pathloss # (if the scenario includes it). After that, it will generate # random channels from all transmitters to all receivers. self._create_users_channels_according_to_scenario(current_parameters) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Input parameters (set in the constructor) xxxxxxxxxxxxxxxxx M = self.modulator.M NSymbs = current_parameters["NSymbs"] K = current_parameters["num_cells"] # Nr = current_parameters["Nr"] # Nt = current_parameters["Nt"] Ns = current_parameters["Ns"] SNR = current_parameters["SNR"] if current_parameters["scenario"] == "NoPathLoss": pt = self._calc_transmit_power(SNR, self.noise_var) elif current_parameters["scenario"] == "Random": pt = self._calc_transmit_power(SNR, self.noise_var, self._path_loss_border) else: raise ValueError("Invalid scenario") # Store the original (maximum) number of streams for each user for # later usage if isinstance(Ns, int): orig_Ns = np.ones(K, dtype=int) * Ns else: orig_Ns = Ns.copy() # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Calc. precoders and receive filters for IA xxxxxxxxxxxxxxxx # We need to perform IA before generating any data so that we know # how many streams we need to send (and thus generate data. Note # that it is not always equal to Ns. It can be lower for some user # if the IA algorithm chooses a precoder that sends zero energy in # some stream. self.ia_solver.clear() self.ia_solver.initialize_with = current_parameters["initialize_with"] try: self.ia_top_object.solve(Ns=Ns, P=pt) except (RuntimeError, LinAlgError): raise SkipThisOne("Could not find the IA solution. Skipping this repetition") # If any of the Nr, Nt or Ns variables were integers (meaning all # users have the same value) we will convert them by numpy arrays # with correct size (K). # Nr = self.ia_solver.Nr # Nt = self.ia_solver.Nt Ns = self.ia_solver.Ns cumNs = np.cumsum(self.ia_solver.Ns) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Input Data xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # inputData has the data of all users (vertically stacked) inputData = self.data_RS.randint(0, M, [np.sum(Ns), NSymbs]) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Modulate input data xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # modulatedData has the data of all users (vertically stacked) modulatedData = self.modulator.modulate(inputData) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Perform the Interference Alignment xxxxxxxxxxxxxxxxxxx # Split the data. transmit_signal will be a list and each element # is a numpy array with the data of a user transmit_signal = np.split(modulatedData, cumNs[:-1]) transmit_signal_precoded = map(np.dot, self.ia_solver.full_F, transmit_signal) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Pass through the channel xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # noinspection PyProtectedMember multi_user_channel = self.ia_solver._multiUserChannel # received_data is an array of matrices, one matrix for each receiver. received_data = multi_user_channel.corrupt_data(transmit_signal_precoded) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Perform the Interference Cancelation xxxxxxxxxxxxxxxxxxxxxx received_data_no_interference = map(np.dot, self.ia_solver.full_W_H, received_data) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Demodulate Data xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx received_data_no_interference = np.vstack(received_data_no_interference) demodulated_data = self.modulator.demodulate(received_data_no_interference) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Calculates the symbol and bit error rates xxxxxxxxxxxxxxxxx symbolErrors = np.sum(inputData != demodulated_data) bitErrors = misc.count_bit_errors(inputData, demodulated_data) numSymbols = inputData.size numBits = inputData.size * fundamental.level2bits(M) ia_cost = self.ia_solver.get_cost() # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Calculates the Sum Capacity xxxxxxxxxxxxxxxxxxxxxxxxxx sirn_all_k = self.ia_solver.calc_SINR() calc_capacity = lambda sirn: np.sum(np.log2(1 + sirn)) # Array with the sum capacity of each user sum_capacity = list(map(calc_capacity, sirn_all_k)) # Total sum capacity total_sum_capacity = np.sum(sum_capacity) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Number of iterations of the IA algorithm xxxxxxxxxxxxx ia_runned_iterations = self.ia_solver.runned_iterations # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Return the simulation results xxxxxxxxxxxxxxxxxxxxxxxxxxxxx symbolErrorsResult = Result.create("symbol_errors", Result.SUMTYPE, symbolErrors) numSymbolsResult = Result.create("num_symbols", Result.SUMTYPE, numSymbols) bitErrorsResult = Result.create("bit_errors", Result.SUMTYPE, bitErrors) numBitsResult = Result.create("num_bits", Result.SUMTYPE, numBits) berResult = Result.create("ber", Result.RATIOTYPE, bitErrors, numBits, accumulate_values=False) serResult = Result.create("ser", Result.RATIOTYPE, symbolErrors, numSymbols, accumulate_values=False) ia_costResult = Result.create("ia_cost", Result.RATIOTYPE, ia_cost, 1, accumulate_values=False) sum_capacityResult = Result.create( "sum_capacity", Result.RATIOTYPE, total_sum_capacity, 1, accumulate_values=False ) ia_runned_iterationsResult = Result.create( "ia_runned_iterations", Result.RATIOTYPE, ia_runned_iterations, 1, accumulate_values=False ) # xxxxxxxxxx chosen stream configuration index xxxxxxxxxxxxxxxxxxxx # Interpret Ns as a multidimensional index stream_index_multi = Ns - 1 # Convert to a 1D index suitable for storing stream_index = int(np.ravel_multi_index(stream_index_multi, orig_Ns)) num_choices = int(np.prod(orig_Ns)) stream_statistics = Result.create("stream_statistics", Result.CHOICETYPE, stream_index, num_choices) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx simResults = SimulationResults() simResults.add_result(symbolErrorsResult) simResults.add_result(numSymbolsResult) simResults.add_result(bitErrorsResult) simResults.add_result(numBitsResult) simResults.add_result(berResult) simResults.add_result(serResult) simResults.add_result(ia_costResult) simResults.add_result(sum_capacityResult) simResults.add_result(ia_runned_iterationsResult) simResults.add_result(stream_statistics) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx return simResults
def _run_simulation( self, # pylint: disable=R0914,R0915 current_parameters): # xxxxxxxxxx Prepare the scenario for this iteration. xxxxxxxxxxxxx # This will create user in random positions and calculate pathloss # (if the scenario includes it). After that, it will generate # random channels from all transmitters to all receivers. self._create_users_channels_according_to_scenario(current_parameters) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Input parameters (set in the constructor) xxxxxxxxxxxxxxxxx M = self.modulator.M NSymbs = current_parameters["NSymbs"] K = current_parameters["num_cells"] # Nr = current_parameters["Nr"] # Nt = current_parameters["Nt"] Ns = current_parameters["Ns"] SNR = current_parameters["SNR"] if current_parameters['scenario'] == 'NoPathLoss': pt = self._calc_transmit_power(SNR, self.noise_var) elif current_parameters['scenario'] == 'Random': pt = self._calc_transmit_power(SNR, self.noise_var, self._path_loss_border) else: raise ValueError('Invalid scenario') # Store the original (maximum) number of streams for each user for # later usage if isinstance(Ns, int): orig_Ns = np.ones(K, dtype=int) * Ns else: orig_Ns = Ns.copy() # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Calc. precoders and receive filters for IA xxxxxxxxxxxxxxxx # We need to perform IA before generating any data so that we know # how many streams we need to send (and thus generate data. Note # that it is not always equal to Ns. It can be lower for some user # if the IA algorithm chooses a precoder that sends zero energy in # some stream. self.ia_solver.clear() self.ia_solver.initialize_with = current_parameters['initialize_with'] try: self.ia_top_object.solve(Ns=Ns, P=pt) except (RuntimeError, LinAlgError): raise SkipThisOne( "Could not find the IA solution. Skipping this repetition") # If any of the Nr, Nt or Ns variables were integers (meaning all # users have the same value) we will convert them by numpy arrays # with correct size (K). # Nr = self.ia_solver.Nr # Nt = self.ia_solver.Nt Ns = self.ia_solver.Ns cumNs = np.cumsum(self.ia_solver.Ns) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Input Data xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # inputData has the data of all users (vertically stacked) inputData = self.data_RS.randint(0, M, [np.sum(Ns), NSymbs]) ":type: np.ndarray" # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Modulate input data xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # modulatedData has the data of all users (vertically stacked) modulatedData = self.modulator.modulate(inputData) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Perform the Interference Alignment xxxxxxxxxxxxxxxxxxx # Split the data. transmit_signal will be a list and each element # is a numpy array with the data of a user transmit_signal = np.split(modulatedData, cumNs[:-1]) transmit_signal_precoded = map(np.dot, self.ia_solver.full_F, transmit_signal) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Pass through the channel xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # noinspection PyProtectedMember multi_user_channel = self.ia_solver._multiUserChannel # received_data is an array of matrices, one matrix for each receiver. received_data = multi_user_channel.corrupt_data( transmit_signal_precoded) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Perform the Interference Cancellation xxxxxxxxxxxxxxxxxxxxx received_data_no_interference = map(np.dot, self.ia_solver.full_W_H, received_data) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Demodulate Data xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx received_data_no_interference = np.vstack( received_data_no_interference) demodulated_data = self.modulator.demodulate( received_data_no_interference) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Calculates the symbol and bit error rates xxxxxxxxxxxxxxxxx symbolErrors = np.sum(inputData != demodulated_data) bitErrors = misc.count_bit_errors(inputData, demodulated_data) numSymbols = inputData.size numBits = inputData.size * fundamental.level2bits(M) ia_cost = self.ia_solver.get_cost() # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Calculates the Sum Capacity xxxxxxxxxxxxxxxxxxxxxxxxxx sirn_all_k = self.ia_solver.calc_SINR() calc_capacity = lambda sirn: np.sum(np.log2(1 + sirn)) # Array with the sum capacity of each user sum_capacity = list(map(calc_capacity, sirn_all_k)) # Total sum capacity total_sum_capacity = np.sum(sum_capacity) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Number of iterations of the IA algorithm xxxxxxxxxxxxx ia_runned_iterations = self.ia_solver.runned_iterations # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Return the simulation results xxxxxxxxxxxxxxxxxxxxxxxxxxxxx symbolErrorsResult = Result.create("symbol_errors", Result.SUMTYPE, symbolErrors) numSymbolsResult = Result.create("num_symbols", Result.SUMTYPE, numSymbols) bitErrorsResult = Result.create("bit_errors", Result.SUMTYPE, bitErrors) numBitsResult = Result.create("num_bits", Result.SUMTYPE, numBits) berResult = Result.create("ber", Result.RATIOTYPE, bitErrors, numBits, accumulate_values=False) serResult = Result.create("ser", Result.RATIOTYPE, symbolErrors, numSymbols, accumulate_values=False) ia_costResult = Result.create("ia_cost", Result.RATIOTYPE, ia_cost, 1, accumulate_values=False) sum_capacityResult = Result.create("sum_capacity", Result.RATIOTYPE, total_sum_capacity, 1, accumulate_values=False) ia_runned_iterationsResult = Result.create("ia_runned_iterations", Result.RATIOTYPE, ia_runned_iterations, 1, accumulate_values=False) # xxxxxxxxxx chosen stream configuration index xxxxxxxxxxxxxxxxxxxx # Interpret Ns as a multidimensional index stream_index_multi = Ns - 1 # Convert to a 1D index suitable for storing stream_index = int(np.ravel_multi_index(stream_index_multi, orig_Ns)) num_choices = int(np.prod(orig_Ns)) stream_statistics = Result.create("stream_statistics", Result.CHOICETYPE, stream_index, num_choices) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx simResults = SimulationResults() simResults.add_result(symbolErrorsResult) simResults.add_result(numSymbolsResult) simResults.add_result(bitErrorsResult) simResults.add_result(numBitsResult) simResults.add_result(berResult) simResults.add_result(serResult) simResults.add_result(ia_costResult) simResults.add_result(sum_capacityResult) simResults.add_result(ia_runned_iterationsResult) simResults.add_result(stream_statistics) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx return simResults
def _run_simulation(self, # pylint: disable=R0914,R0915 current_parameters): # xxxxx Input parameters (set in the constructor) xxxxxxxxxxxxxxxxx M = self.modulator.M NSymbs = current_parameters["NSymbs"] K = current_parameters["K"] Nr = current_parameters["Nr"] Nt = current_parameters["Nt"] Ns = current_parameters["Ns"] SNR = current_parameters["SNR"] # Dependent parameters noise_var = 1 / dB2Linear(SNR) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Calc. precoders and receive filters for IA xxxxxxxxxxxxxxxx # We need to perform IA before generating any data so that we know # how many streams we need to send (and thus generate data. Note # that it is not always equal to Ns. It can be lower for some user # if the IA algorithm chooses a precoder that sends zero energy in # some stream. self.multiUserChannel.randomize(Nr, Nt, K) self.multiUserChannel.noise_var = noise_var self.ia_solver.clear() self.ia_solver.solve(Ns) # If any of the Nr, Nt or Ns variables were integers (meaning all # users have the same value) we will convert them by numpy arrays # with correct size (K). # Nr = self.ia_solver.Nr # Nt = self.ia_solver.Nt Ns = self.ia_solver.Ns cumNs = np.cumsum(self.ia_solver.Ns) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Input Data xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # inputData has the data of all users (vertically stacked) inputData = np.random.randint(0, M, [np.sum(Ns), NSymbs]) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Modulate input data xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # modulatedData has the data of all users (vertically stacked) modulatedData = self.modulator.modulate(inputData) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Perform the Interference Alignment xxxxxxxxxxxxxxxxxxx # Split the data. transmit_signal will be a list and each element # is a numpy array with the data of a user transmit_signal = np.split(modulatedData, cumNs[:-1]) transmit_signal_precoded = map( np.dot, self.ia_solver.full_F, transmit_signal) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Pass through the channel xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # noinspection PyProtectedMember multi_user_channel = self.ia_solver._multiUserChannel # received_data is an array of matrices, one matrix for each receiver. received_data = multi_user_channel.corrupt_data( transmit_signal_precoded) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Perform the Interference Cancellation xxxxxxxxxxxxxxxxxxxxx received_data_no_interference = map( np.dot, self.ia_solver.full_W_H, received_data) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Demodulate Data xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx received_data_no_interference = np.vstack( received_data_no_interference) demodulated_data = self.modulator.demodulate( received_data_no_interference) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Calculates the symbol and bit error rates xxxxxxxxxxxxxxxxx symbolErrors = np.sum(inputData != demodulated_data) bitErrors = misc.count_bit_errors(inputData, demodulated_data) numSymbols = inputData.size numBits = inputData.size * fundamental.level2bits(M) ia_cost = self.ia_solver.get_cost() # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Calculates the Sum Capacity xxxxxxxxxxxxxxxxxxxxxxxxxx sirn_all_k = self.ia_solver.calc_SINR() calc_capacity = lambda sirn: np.sum(np.log2(1 + sirn)) # Array with the sum capacity of each user sum_capacity = np.array(list(map(calc_capacity, sirn_all_k))) # Total sum capacity total_sum_capacity = np.sum(sum_capacity) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Number of iterations of the IA algorithm xxxxxxxxxxxxx ia_runned_iterations = self.ia_solver.runned_iterations # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Return the simulation results xxxxxxxxxxxxxxxxxxxxxxxxxxxxx symbolErrorsResult = Result.create( "symbol_errors", Result.SUMTYPE, symbolErrors) numSymbolsResult = Result.create( "num_symbols", Result.SUMTYPE, numSymbols) bitErrorsResult = Result.create( "bit_errors", Result.SUMTYPE, bitErrors) numBitsResult = Result.create("num_bits", Result.SUMTYPE, numBits) berResult = Result.create("ber", Result.RATIOTYPE, bitErrors, numBits, accumulate_values=False) serResult = Result.create("ser", Result.RATIOTYPE, symbolErrors, numSymbols, accumulate_values=False) ia_costResult = Result.create( "ia_cost", Result.RATIOTYPE, ia_cost, 1, accumulate_values=False) sum_capacityResult = Result.create( "sum_capacity", Result.RATIOTYPE, total_sum_capacity, 1, accumulate_values=False) ia_runned_iterationsResult = Result.create( "ia_runned_iterations", Result.RATIOTYPE, ia_runned_iterations, 1, accumulate_values=False) simResults = SimulationResults() simResults.add_result(symbolErrorsResult) simResults.add_result(numSymbolsResult) simResults.add_result(bitErrorsResult) simResults.add_result(numBitsResult) simResults.add_result(berResult) simResults.add_result(serResult) simResults.add_result(ia_costResult) simResults.add_result(sum_capacityResult) simResults.add_result(ia_runned_iterationsResult) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx return simResults