示例#1
0
    def test_calc_whitening_matrix(self):
        A = misc.randn_c(3, 3)

        # B is symmetric and positive semi-definite
        B = np.dot(A, A.conjugate().T)

        Wd = misc.calc_whitening_matrix(B)

        D = np.dot(np.dot(Wd.conjugate().T, B), Wd)

        # D must be an identity matrix
        np.testing.assert_array_almost_equal(D, np.eye(3))
示例#2
0
    def test_calc_whitening_matrix(self):
        A = misc.randn_c(3, 3)

        # B is symmetric and positive semi-definite
        B = np.dot(A, A.conjugate().T)

        Wd = misc.calc_whitening_matrix(B)

        D = np.dot(np.dot(Wd.conjugate().T, B), Wd)

        # D must be an identity matrix
        np.testing.assert_array_almost_equal(D, np.eye(3))
示例#3
0
    def test_calc_whitening_matrices(self):
        Nr = np.array([2, 2])
        Nt = np.array([2, 2])
        K = Nt.size
        Nti = 1
        iPu = 1e-1  # Power for each user (linear scale)
        pe = 1e-3  # External interference power (in linear scale)
        noise_var = 1e-4

        # Generate the multi-user channel
        mu_channel = multiuser.MultiUserChannelMatrixExtInt()
        mu_channel.randomize(Nr, Nt, K, Nti)
        mu_channel.noise_var = noise_var

        bd_obj = blockdiagonalization.BDWithExtIntBase(K, iPu, noise_var, pe)
        W_all_k = bd_obj.calc_whitening_matrices(mu_channel)

        R_all_k = mu_channel.calc_cov_matrix_extint_plus_noise(pe)
        for W, R in zip(W_all_k, R_all_k):
            np.testing.assert_array_almost_equal(
                W,
                calc_whitening_matrix(R).conjugate().T)
示例#4
0
    def test_calc_whitening_matrices(self):
        Nr = np.array([2, 2])
        Nt = np.array([2, 2])
        K = Nt.size
        Nti = 1
        iPu = 1e-1  # Power for each user (linear scale)
        pe = 1e-3  # External interference power (in linear scale)
        noise_var = 1e-4

        # Generate the multi-user channel
        mu_channel = multiuser.MultiUserChannelMatrixExtInt()
        mu_channel.randomize(Nr, Nt, K, Nti)
        mu_channel.noise_var = noise_var

        bd_obj = blockdiagonalization.BDWithExtIntBase(K, iPu, noise_var, pe)
        W_all_k = bd_obj.calc_whitening_matrices(mu_channel)

        R_all_k = mu_channel.calc_cov_matrix_extint_plus_noise(pe)
        for W, R in zip(W_all_k, R_all_k):
            np.testing.assert_array_almost_equal(
                W,
                calc_whitening_matrix(R).conjugate().T)