def run_problem(real, imag, max_iter, num_steps, num_nodes, criteria, task, num_tasks, n_procs, starttime): _width = len(str(num_tasks)) _percent = float(task) / float(num_tasks) * 100 _diff_time = time.time() - starttime _time_epsilon = 0.1 if task > n_procs \ and ((_diff_time > 8.0 and ((_diff_time % 10.0) < _time_epsilon) or ((10.0 - (_diff_time % 10.0)) < _time_epsilon)) or (num_tasks % 2 == 0 and _percent % 4 == 0) or (num_tasks % 2 != 0 and _percent % 4 == 0)): print("[ {:6.2f}%] Starting task {:{width}d} of {:{width}d}: \\lambda = {: .3f}{:+.3f}i" .format(_percent, task, num_tasks, real, imag, width=_width)) base_integrator = SdcIntegrator() base_integrator.init(num_nodes=num_nodes) intermediate_integrator = SdcIntegrator() intermediate_integrator.init(num_nodes=(2 * num_nodes - 1)) # fine_integrator = SdcIntegrator() # fine_integrator.init(num_nodes=(num_nodes + 4)) transitioner1 = TimeTransitionProvider(fine_nodes=intermediate_integrator.nodes, coarse_nodes=base_integrator.nodes) # transitioner2 = TimeTransitionProvider(fine_nodes=fine_integrator.nodes, coarse_nodes=intermediate_integrator.nodes) ml_provider = MultiTimeLevelProvider() # ml_provider.add_coarse_level(fine_integrator) ml_provider.add_coarse_level(intermediate_integrator) ml_provider.add_coarse_level(base_integrator) ml_provider.add_level_transition(transitioner1, 0, 1) # ml_provider.add_level_transition(transitioner2, 1, 2) problem = LambdaU(lmbda=complex(real, imag)) check = ThresholdCheck(min_threshold=1e-12, max_threshold=max_iter, conditions=('residual', 'iterations')) comm = ForwardSendingMessaging() solver = MlSdc(communicator=comm) comm.link_solvers(previous=comm, next=comm) comm.write_buffer(tag=(ml_provider.num_levels - 1), value=problem.initial_value, time_point=problem.time_start) solver.init(problem=problem, ml_provider=ml_provider, threshold=check) try: solution = solver.run(SemiImplicitMlSdcCore, dt=(problem.time_end - problem.time_start)) return int(solution[-1].used_iterations) # print("####======> %s -> %s" % (solution[-1].error(-1)[-1].value, linalg.norm(solution[-1].error(-1)[-1].value))) # return two_norm(solution[-1].error(-1)[-1].value) except RuntimeError: return max_iter + 1
ml_provider.add_coarse_level(intermediate_integrator) ml_provider.add_coarse_level(base_integrator) ml_provider.add_level_transition(transitioner1, 0, 1) # ml_provider.add_level_transition(transitioner2, 1, 2) print(ml_provider) from examples.problems.constant import Constant from examples.problems.lambda_u import LambdaU # problem = Constant() problem = LambdaU(lmbda=complex(-1.0, -1.0)) print(problem) from pypint.communicators import ForwardSendingMessaging comm = ForwardSendingMessaging() from pypint.solvers.ml_sdc import MlSdc mlsdc = MlSdc(communicator=comm) comm.link_solvers(previous=comm, next=comm) comm.write_buffer(tag=(ml_provider.num_levels - 1), value=problem.initial_value, time_point=problem.time_start) mlsdc.init(problem=problem, ml_provider=ml_provider) from pypint.solvers.cores import ExplicitMlSdcCore, ImplicitMlSdcCore, SemiImplicitMlSdcCore mlsdc.run(SemiImplicitMlSdcCore, dt=1.0) print("RHS Evaluations: %d" % problem.rhs_evaluations)