def totcost(gencost, Pg): """Computes total cost for generators at given output level. Computes total cost for generators given a matrix in gencost format and a column vector or matrix of generation levels. The return value has the same dimensions as PG. Each row of C{gencost} is used to evaluate the cost at the points specified in the corresponding row of C{Pg}. @author: Ray Zimmerman (PSERC Cornell) @author: Carlos E. Murillo-Sanchez (PSERC Cornell & Universidad Autonoma de Manizales) @author: Richard Lincoln """ ng, m = gencost.shape totalcost = zeros(ng) if len(gencost) > 0: ipwl = find(gencost[:, MODEL] == PW_LINEAR) ipol = find(gencost[:, MODEL] == POLYNOMIAL) if len(ipwl) > 0: p = gencost[:, COST:(m-1):2] c = gencost[:, (COST+1):m:2] for i in ipwl: ncost = gencost[i, NCOST] for k in arange(ncost - 1): p1, p2 = p[i, k], p[i, k+1] c1, c2 = c[i, k], c[i, k+1] m = (c2 - c1) / (p2 - p1) b = c1 - m * p1 Pgen = Pg[i] if Pgen < p2: totalcost[i] = m * Pgen + b break totalcost[i] = m * Pgen + b if len(ipol) > 0: totalcost[ipol] = polycost(gencost[ipol, :], Pg[ipol]) return totalcost
def opf_costfcn(x, om, return_hessian=False): """Evaluates objective function, gradient and Hessian for OPF. Objective function evaluation routine for AC optimal power flow, suitable for use with L{pips}. Computes objective function value, gradient and Hessian. @param x: optimization vector @param om: OPF model object @return: C{F} - value of objective function. C{df} - (optional) gradient of objective function (column vector). C{d2f} - (optional) Hessian of objective function (sparse matrix). @see: L{opf_consfcn}, L{opf_hessfcn} @author: Carlos E. Murillo-Sanchez (PSERC Cornell & Universidad Autonoma de Manizales) @author: Ray Zimmerman (PSERC Cornell) """ ##----- initialize ----- ## unpack data ppc = om.get_ppc() baseMVA, gen, gencost = ppc["baseMVA"], ppc["gen"], ppc["gencost"] cp = om.get_cost_params() N, Cw, H, dd, rh, kk, mm = \ cp["N"], cp["Cw"], cp["H"], cp["dd"], cp["rh"], cp["kk"], cp["mm"] vv, _, _, _ = om.get_idx() ## problem dimensions ng = gen.shape[0] ## number of dispatchable injections ny = om.getN('var', 'y') ## number of piece-wise linear costs nxyz = len(x) ## total number of control vars of all types ## grab Pg & Qg Pg = x[vv["i1"]["Pg"]:vv["iN"]["Pg"]] ## active generation in p.u. Qg = x[vv["i1"]["Qg"]:vv["iN"]["Qg"]] ## reactive generation in p.u. ##----- evaluate objective function ----- ## polynomial cost of P and Q # use totcost only on polynomial cost in the minimization problem # formulation, pwl cost is the sum of the y variables. ipol = find(gencost[:, MODEL] == POLYNOMIAL) ## poly MW and MVAr costs xx = r_[Pg, Qg] * baseMVA if any(ipol): f = sum(totcost(gencost[ipol, :], xx[ipol])) ## cost of poly P or Q else: f = 0 ## piecewise linear cost of P and Q if ny > 0: ccost = sparse( (ones(ny), (zeros(ny), arange(vv["i1"]["y"], vv["iN"]["y"]))), (1, nxyz)).toarray().flatten() f = f + dot(ccost, x) else: ccost = zeros(nxyz) ## generalized cost term if issparse(N) and N.nnz > 0: nw = N.shape[0] r = N * x - rh ## Nx - rhat iLT = find(r < -kk) ## below dead zone iEQ = find((r == 0) & (kk == 0)) ## dead zone doesn't exist iGT = find(r > kk) ## above dead zone iND = r_[iLT, iEQ, iGT] ## rows that are Not in the Dead region iL = find(dd == 1) ## rows using linear function iQ = find(dd == 2) ## rows using quadratic function LL = sparse((ones(len(iL)), (iL, iL)), (nw, nw)) QQ = sparse((ones(len(iQ)), (iQ, iQ)), (nw, nw)) kbar = sparse((r_[ones(len(iLT)), zeros(len(iEQ)), -ones(len(iGT))], (iND, iND)), (nw, nw)) * kk rr = r + kbar ## apply non-dead zone shift M = sparse((mm[iND], (iND, iND)), (nw, nw)) ## dead zone or scale diagrr = sparse((rr, (arange(nw), arange(nw))), (nw, nw)) ## linear rows multiplied by rr(i), quadratic rows by rr(i)^2 w = M * (LL + QQ * diagrr) * rr f = f + dot(w * H, w) / 2 + dot(Cw, w) ##----- evaluate cost gradient ----- ## index ranges iPg = list(range(vv["i1"]["Pg"], vv["iN"]["Pg"])) iQg = list(range(vv["i1"]["Qg"], vv["iN"]["Qg"])) ## polynomial cost of P and Q df_dPgQg = zeros(2 * ng) ## w.r.t p.u. Pg and Qg df_dPgQg[ipol] = baseMVA * polycost(gencost[ipol, :], xx[ipol], 1) df = zeros(nxyz) df[iPg] = df_dPgQg[:ng] df[iQg] = df_dPgQg[ng:ng + ng] ## piecewise linear cost of P and Q df = df + ccost # The linear cost row is additive wrt any nonlinear cost. ## generalized cost term if issparse(N) and N.nnz > 0: HwC = H * w + Cw AA = N.T * M * (LL + 2 * QQ * diagrr) df = df + AA * HwC ## numerical check if 0: ## 1 to check, 0 to skip check ddff = zeros(df.shape) step = 1e-7 tol = 1e-3 for k in range(len(x)): xx = x xx[k] = xx[k] + step ddff[k] = (opf_costfcn(xx, om) - f) / step if max(abs(ddff - df)) > tol: idx = find(abs(ddff - df) == max(abs(ddff - df))) print('Mismatch in gradient') print('idx df(num) df diff') print(('%4d%16g%16g%16g' % (list(range(len(df))), ddff.T, df.T, abs(ddff - df).T))) print('MAX') print(('%4d%16g%16g%16g' % (idx.T, ddff[idx].T, df[idx].T, abs(ddff[idx] - df[idx]).T))) if not return_hessian: return f, df ## ---- evaluate cost Hessian ----- pcost = gencost[list(range(ng)), :] if gencost.shape[0] > ng: qcost = gencost[ng + 1:2 * ng, :] else: qcost = array([]) ## polynomial generator costs d2f_dPg2 = zeros(ng) ## w.r.t. p.u. Pg d2f_dQg2 = zeros(ng) ## w.r.t. p.u. Qg ipolp = find(pcost[:, MODEL] == POLYNOMIAL) d2f_dPg2[ipolp] = \ baseMVA**2 * polycost(pcost[ipolp, :], Pg[ipolp]*baseMVA, 2) if any(qcost): ## Qg is not free ipolq = find(qcost[:, MODEL] == POLYNOMIAL) d2f_dQg2[ipolq] = \ baseMVA**2 * polycost(qcost[ipolq, :], Qg[ipolq] * baseMVA, 2) i = r_[iPg, iQg].T d2f = sparse((r_[d2f_dPg2, d2f_dQg2], (i, i)), (nxyz, nxyz)) ## generalized cost if N is not None and issparse(N): d2f = d2f + AA * H * AA.T + 2 * N.T * M * QQ * \ sparse((HwC, (list(range(nw)), list(range(nw)))), (nw, nw)) * N return f, df, d2f
def opf_hessfcn(x, lmbda, om, Ybus, Yf, Yt, ppopt, il=None, cost_mult=1.0): """Evaluates Hessian of Lagrangian for AC OPF. Hessian evaluation function for AC optimal power flow, suitable for use with L{pips}. Examples:: Lxx = opf_hessfcn(x, lmbda, om, Ybus, Yf, Yt, ppopt) Lxx = opf_hessfcn(x, lmbda, om, Ybus, Yf, Yt, ppopt, il) Lxx = opf_hessfcn(x, lmbda, om, Ybus, Yf, Yt, ppopt, il, cost_mult) @param x: optimization vector @param lmbda: C{eqnonlin} - Lagrange multipliers on power balance equations. C{ineqnonlin} - Kuhn-Tucker multipliers on constrained branch flows. @param om: OPF model object @param Ybus: bus admittance matrix @param Yf: admittance matrix for "from" end of constrained branches @param Yt: admittance matrix for "to" end of constrained branches @param ppopt: PYPOWER options vector @param il: (optional) vector of branch indices corresponding to branches with flow limits (all others are assumed to be unconstrained). The default is C{range(nl)} (all branches). C{Yf} and C{Yt} contain only the rows corresponding to C{il}. @param cost_mult: (optional) Scale factor to be applied to the cost (default = 1). @return: Hessian of the Lagrangian. @see: L{opf_costfcn}, L{opf_consfcn} @author: Ray Zimmerman (PSERC Cornell) @author: Carlos E. Murillo-Sanchez (PSERC Cornell & Universidad Autonoma de Manizales) """ ##----- initialize ----- ## unpack data ppc = om.get_ppc() baseMVA, bus, gen, branch, gencost = \ ppc["baseMVA"], ppc["bus"], ppc["gen"], ppc["branch"], ppc["gencost"] cp = om.get_cost_params() N, Cw, H, dd, rh, kk, mm = \ cp["N"], cp["Cw"], cp["H"], cp["dd"], cp["rh"], cp["kk"], cp["mm"] vv, _, _, _ = om.get_idx() ## unpack needed parameters nb = bus.shape[0] ## number of buses nl = branch.shape[0] ## number of branches ng = gen.shape[0] ## number of dispatchable injections nxyz = len(x) ## total number of control vars of all types ## set default constrained lines if il is None: il = arange(nl) ## all lines have limits by default nl2 = len(il) ## number of constrained lines ## grab Pg & Qg Pg = x[vv["i1"]["Pg"]:vv["iN"]["Pg"]] ## active generation in p.u. Qg = x[vv["i1"]["Qg"]:vv["iN"]["Qg"]] ## reactive generation in p.u. ## put Pg & Qg back in gen gen[:, PG] = Pg * baseMVA ## active generation in MW gen[:, QG] = Qg * baseMVA ## reactive generation in MVAr ## reconstruct V Va = x[vv["i1"]["Va"]:vv["iN"]["Va"]] Vm = x[vv["i1"]["Vm"]:vv["iN"]["Vm"]] V = Vm * exp(1j * Va) nxtra = nxyz - 2 * nb pcost = gencost[arange(ng), :] if gencost.shape[0] > ng: qcost = gencost[arange(ng, 2 * ng), :] else: qcost = array([]) ## ----- evaluate d2f ----- d2f_dPg2 = zeros(ng) #sparse((ng, 1)) ## w.r.t. p.u. Pg d2f_dQg2 = zeros(ng) #sparse((ng, 1)) ## w.r.t. p.u. Qg ipolp = find(pcost[:, MODEL] == POLYNOMIAL) d2f_dPg2[ipolp] = \ baseMVA**2 * polycost(pcost[ipolp, :], Pg[ipolp] * baseMVA, 2) if any(qcost): ## Qg is not free ipolq = find(qcost[:, MODEL] == POLYNOMIAL) d2f_dQg2[ipolq] = \ baseMVA**2 * polycost(qcost[ipolq, :], Qg[ipolq] * baseMVA, 2) i = r_[arange(vv["i1"]["Pg"], vv["iN"]["Pg"]), arange(vv["i1"]["Qg"], vv["iN"]["Qg"])] # d2f = sparse((vstack([d2f_dPg2, d2f_dQg2]).toarray().flatten(), # (i, i)), shape=(nxyz, nxyz)) d2f = sparse((r_[d2f_dPg2, d2f_dQg2], (i, i)), (nxyz, nxyz)) ## generalized cost if issparse(N) and N.nnz > 0: nw = N.shape[0] r = N * x - rh ## Nx - rhat iLT = find(r < -kk) ## below dead zone iEQ = find((r == 0) & (kk == 0)) ## dead zone doesn't exist iGT = find(r > kk) ## above dead zone iND = r_[iLT, iEQ, iGT] ## rows that are Not in the Dead region iL = find(dd == 1) ## rows using linear function iQ = find(dd == 2) ## rows using quadratic function LL = sparse((ones(len(iL)), (iL, iL)), (nw, nw)) QQ = sparse((ones(len(iQ)), (iQ, iQ)), (nw, nw)) kbar = sparse((r_[ones(len(iLT)), zeros(len(iEQ)), -ones(len(iGT))], (iND, iND)), (nw, nw)) * kk rr = r + kbar ## apply non-dead zone shift M = sparse((mm[iND], (iND, iND)), (nw, nw)) ## dead zone or scale diagrr = sparse((rr, (arange(nw), arange(nw))), (nw, nw)) ## linear rows multiplied by rr(i), quadratic rows by rr(i)^2 w = M * (LL + QQ * diagrr) * rr HwC = H * w + Cw AA = N.T * M * (LL + 2 * QQ * diagrr) d2f = d2f + AA * H * AA.T + 2 * N.T * M * QQ * \ sparse((HwC, (arange(nw), arange(nw))), (nw, nw)) * N d2f = d2f * cost_mult ##----- evaluate Hessian of power balance constraints ----- nlam = len(lmbda["eqnonlin"]) / 2 lamP = lmbda["eqnonlin"][:nlam] lamQ = lmbda["eqnonlin"][nlam:nlam + nlam] Gpaa, Gpav, Gpva, Gpvv = d2Sbus_dV2(Ybus, V, lamP) Gqaa, Gqav, Gqva, Gqvv = d2Sbus_dV2(Ybus, V, lamQ) d2G = vstack([ hstack([ vstack([hstack([Gpaa, Gpav]), hstack([Gpva, Gpvv])]).real + vstack([hstack([Gqaa, Gqav]), hstack([Gqva, Gqvv])]).imag, sparse((2 * nb, nxtra)) ]), hstack([sparse( (nxtra, 2 * nb)), sparse((nxtra, nxtra))]) ], "csr") ##----- evaluate Hessian of flow constraints ----- nmu = len(lmbda["ineqnonlin"]) / 2 muF = lmbda["ineqnonlin"][:nmu] muT = lmbda["ineqnonlin"][nmu:nmu + nmu] if ppopt['OPF_FLOW_LIM'] == 2: ## current dIf_dVa, dIf_dVm, dIt_dVa, dIt_dVm, If, It = dIbr_dV(branch, Yf, Yt, V) Hfaa, Hfav, Hfva, Hfvv = d2AIbr_dV2(dIf_dVa, dIf_dVm, If, Yf, V, muF) Htaa, Htav, Htva, Htvv = d2AIbr_dV2(dIt_dVa, dIt_dVm, It, Yt, V, muT) else: f = branch[il, F_BUS].astype(int) ## list of "from" buses t = branch[il, T_BUS].astype(int) ## list of "to" buses ## connection matrix for line & from buses Cf = sparse((ones(nl2), (arange(nl2), f)), (nl2, nb)) ## connection matrix for line & to buses Ct = sparse((ones(nl2), (arange(nl2), t)), (nl2, nb)) dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm, Sf, St = \ dSbr_dV(branch[il,:], Yf, Yt, V) if ppopt['OPF_FLOW_LIM'] == 1: ## real power Hfaa, Hfav, Hfva, Hfvv = d2ASbr_dV2(dSf_dVa.real, dSf_dVm.real, Sf.real, Cf, Yf, V, muF) Htaa, Htav, Htva, Htvv = d2ASbr_dV2(dSt_dVa.real, dSt_dVm.real, St.real, Ct, Yt, V, muT) else: ## apparent power Hfaa, Hfav, Hfva, Hfvv = \ d2ASbr_dV2(dSf_dVa, dSf_dVm, Sf, Cf, Yf, V, muF) Htaa, Htav, Htva, Htvv = \ d2ASbr_dV2(dSt_dVa, dSt_dVm, St, Ct, Yt, V, muT) d2H = vstack([ hstack([ vstack([hstack([Hfaa, Hfav]), hstack([Hfva, Hfvv])]) + vstack([hstack([Htaa, Htav]), hstack([Htva, Htvv])]), sparse((2 * nb, nxtra)) ]), hstack([sparse( (nxtra, 2 * nb)), sparse((nxtra, nxtra))]) ], "csr") ##----- do numerical check using (central) finite differences ----- if 0: nx = len(x) step = 1e-5 num_d2f = sparse((nx, nx)) num_d2G = sparse((nx, nx)) num_d2H = sparse((nx, nx)) for i in range(nx): xp = x xm = x xp[i] = x[i] + step / 2 xm[i] = x[i] - step / 2 # evaluate cost & gradients _, dfp = opf_costfcn(xp, om) _, dfm = opf_costfcn(xm, om) # evaluate constraints & gradients _, _, dHp, dGp = opf_consfcn(xp, om, Ybus, Yf, Yt, ppopt, il) _, _, dHm, dGm = opf_consfcn(xm, om, Ybus, Yf, Yt, ppopt, il) num_d2f[:, i] = cost_mult * (dfp - dfm) / step num_d2G[:, i] = (dGp - dGm) * lmbda["eqnonlin"] / step num_d2H[:, i] = (dHp - dHm) * lmbda["ineqnonlin"] / step d2f_err = max(max(abs(d2f - num_d2f))) d2G_err = max(max(abs(d2G - num_d2G))) d2H_err = max(max(abs(d2H - num_d2H))) if d2f_err > 1e-6: print('Max difference in d2f: %g' % d2f_err) if d2G_err > 1e-5: print('Max difference in d2G: %g' % d2G_err) if d2H_err > 1e-6: print('Max difference in d2H: %g' % d2H_err) return d2f + d2G + d2H
def opf_hessfcn(x, lmbda, om, Ybus, Yf, Yt, ppopt, il=None, cost_mult=1.0): """Evaluates Hessian of Lagrangian for AC OPF. Hessian evaluation function for AC optimal power flow, suitable for use with L{pips}. Examples:: Lxx = opf_hessfcn(x, lmbda, om, Ybus, Yf, Yt, ppopt) Lxx = opf_hessfcn(x, lmbda, om, Ybus, Yf, Yt, ppopt, il) Lxx = opf_hessfcn(x, lmbda, om, Ybus, Yf, Yt, ppopt, il, cost_mult) @param x: optimization vector @param lmbda: C{eqnonlin} - Lagrange multipliers on power balance equations. C{ineqnonlin} - Kuhn-Tucker multipliers on constrained branch flows. @param om: OPF model object @param Ybus: bus admittance matrix @param Yf: admittance matrix for "from" end of constrained branches @param Yt: admittance matrix for "to" end of constrained branches @param ppopt: PYPOWER options vector @param il: (optional) vector of branch indices corresponding to branches with flow limits (all others are assumed to be unconstrained). The default is C{range(nl)} (all branches). C{Yf} and C{Yt} contain only the rows corresponding to C{il}. @param cost_mult: (optional) Scale factor to be applied to the cost (default = 1). @return: Hessian of the Lagrangian. @see: L{opf_costfcn}, L{opf_consfcn} @author: Ray Zimmerman (PSERC Cornell) @author: Carlos E. Murillo-Sanchez (PSERC Cornell & Universidad Autonoma de Manizales) """ ##----- initialize ----- ## unpack data ppc = om.get_ppc() baseMVA, bus, gen, branch, gencost = \ ppc["baseMVA"], ppc["bus"], ppc["gen"], ppc["branch"], ppc["gencost"] cp = om.get_cost_params() N, Cw, H, dd, rh, kk, mm = \ cp["N"], cp["Cw"], cp["H"], cp["dd"], cp["rh"], cp["kk"], cp["mm"] vv, _, _, _ = om.get_idx() ## unpack needed parameters nb = bus.shape[0] ## number of buses nl = branch.shape[0] ## number of branches ng = gen.shape[0] ## number of dispatchable injections nxyz = len(x) ## total number of control vars of all types ## set default constrained lines if il is None: il = arange(nl) ## all lines have limits by default nl2 = len(il) ## number of constrained lines ## grab Pg & Qg Pg = x[vv["i1"]["Pg"]:vv["iN"]["Pg"]] ## active generation in p.u. Qg = x[vv["i1"]["Qg"]:vv["iN"]["Qg"]] ## reactive generation in p.u. ## put Pg & Qg back in gen gen[:, PG] = Pg * baseMVA ## active generation in MW gen[:, QG] = Qg * baseMVA ## reactive generation in MVAr ## reconstruct V Va = x[vv["i1"]["Va"]:vv["iN"]["Va"]] Vm = x[vv["i1"]["Vm"]:vv["iN"]["Vm"]] V = Vm * exp(1j * Va) nxtra = nxyz - 2 * nb pcost = gencost[arange(ng), :] if gencost.shape[0] > ng: qcost = gencost[arange(ng, 2 * ng), :] else: qcost = array([]) ## ----- evaluate d2f ----- d2f_dPg2 = zeros(ng)#sparse((ng, 1)) ## w.r.t. p.u. Pg d2f_dQg2 = zeros(ng)#sparse((ng, 1)) ## w.r.t. p.u. Qg ipolp = find(pcost[:, MODEL] == POLYNOMIAL) d2f_dPg2[ipolp] = \ baseMVA**2 * polycost(pcost[ipolp, :], Pg[ipolp] * baseMVA, 2) if any(qcost): ## Qg is not free ipolq = find(qcost[:, MODEL] == POLYNOMIAL) d2f_dQg2[ipolq] = \ baseMVA**2 * polycost(qcost[ipolq, :], Qg[ipolq] * baseMVA, 2) i = r_[arange(vv["i1"]["Pg"], vv["iN"]["Pg"]), arange(vv["i1"]["Qg"], vv["iN"]["Qg"])] # d2f = sparse((vstack([d2f_dPg2, d2f_dQg2]).toarray().flatten(), # (i, i)), shape=(nxyz, nxyz)) d2f = sparse((r_[d2f_dPg2, d2f_dQg2], (i, i)), (nxyz, nxyz)) ## generalized cost if issparse(N) and N.nnz > 0: nw = N.shape[0] r = N * x - rh ## Nx - rhat iLT = find(r < -kk) ## below dead zone iEQ = find((r == 0) & (kk == 0)) ## dead zone doesn't exist iGT = find(r > kk) ## above dead zone iND = r_[iLT, iEQ, iGT] ## rows that are Not in the Dead region iL = find(dd == 1) ## rows using linear function iQ = find(dd == 2) ## rows using quadratic function LL = sparse((ones(len(iL)), (iL, iL)), (nw, nw)) QQ = sparse((ones(len(iQ)), (iQ, iQ)), (nw, nw)) kbar = sparse((r_[ones(len(iLT)), zeros(len(iEQ)), -ones(len(iGT))], (iND, iND)), (nw, nw)) * kk rr = r + kbar ## apply non-dead zone shift M = sparse((mm[iND], (iND, iND)), (nw, nw)) ## dead zone or scale diagrr = sparse((rr, (arange(nw), arange(nw))), (nw, nw)) ## linear rows multiplied by rr(i), quadratic rows by rr(i)^2 w = M * (LL + QQ * diagrr) * rr HwC = H * w + Cw AA = N.T * M * (LL + 2 * QQ * diagrr) d2f = d2f + AA * H * AA.T + 2 * N.T * M * QQ * \ sparse((HwC, (arange(nw), arange(nw))), (nw, nw)) * N d2f = d2f * cost_mult ##----- evaluate Hessian of power balance constraints ----- nlam = len(lmbda["eqnonlin"]) / 2 lamP = lmbda["eqnonlin"][:nlam] lamQ = lmbda["eqnonlin"][nlam:nlam + nlam] Gpaa, Gpav, Gpva, Gpvv = d2Sbus_dV2(Ybus, V, lamP) Gqaa, Gqav, Gqva, Gqvv = d2Sbus_dV2(Ybus, V, lamQ) d2G = vstack([ hstack([ vstack([hstack([Gpaa, Gpav]), hstack([Gpva, Gpvv])]).real + vstack([hstack([Gqaa, Gqav]), hstack([Gqva, Gqvv])]).imag, sparse((2 * nb, nxtra))]), hstack([ sparse((nxtra, 2 * nb)), sparse((nxtra, nxtra)) ]) ], "csr") ##----- evaluate Hessian of flow constraints ----- nmu = len(lmbda["ineqnonlin"]) / 2 muF = lmbda["ineqnonlin"][:nmu] muT = lmbda["ineqnonlin"][nmu:nmu + nmu] if ppopt['OPF_FLOW_LIM'] == 2: ## current dIf_dVa, dIf_dVm, dIt_dVa, dIt_dVm, If, It = dIbr_dV(Yf, Yt, V) Hfaa, Hfav, Hfva, Hfvv = d2AIbr_dV2(dIf_dVa, dIf_dVm, If, Yf, V, muF) Htaa, Htav, Htva, Htvv = d2AIbr_dV2(dIt_dVa, dIt_dVm, It, Yt, V, muT) else: f = branch[il, F_BUS].astype(int) ## list of "from" buses t = branch[il, T_BUS].astype(int) ## list of "to" buses ## connection matrix for line & from buses Cf = sparse((ones(nl2), (arange(nl2), f)), (nl2, nb)) ## connection matrix for line & to buses Ct = sparse((ones(nl2), (arange(nl2), t)), (nl2, nb)) dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm, Sf, St = \ dSbr_dV(branch[il,:], Yf, Yt, V) if ppopt['OPF_FLOW_LIM'] == 1: ## real power Hfaa, Hfav, Hfva, Hfvv = d2ASbr_dV2(dSf_dVa.real, dSf_dVm.real, Sf.real, Cf, Yf, V, muF) Htaa, Htav, Htva, Htvv = d2ASbr_dV2(dSt_dVa.real, dSt_dVm.real, St.real, Ct, Yt, V, muT) else: ## apparent power Hfaa, Hfav, Hfva, Hfvv = \ d2ASbr_dV2(dSf_dVa, dSf_dVm, Sf, Cf, Yf, V, muF) Htaa, Htav, Htva, Htvv = \ d2ASbr_dV2(dSt_dVa, dSt_dVm, St, Ct, Yt, V, muT) d2H = vstack([ hstack([ vstack([hstack([Hfaa, Hfav]), hstack([Hfva, Hfvv])]) + vstack([hstack([Htaa, Htav]), hstack([Htva, Htvv])]), sparse((2 * nb, nxtra)) ]), hstack([ sparse((nxtra, 2 * nb)), sparse((nxtra, nxtra)) ]) ], "csr") ##----- do numerical check using (central) finite differences ----- if 0: nx = len(x) step = 1e-5 num_d2f = sparse((nx, nx)) num_d2G = sparse((nx, nx)) num_d2H = sparse((nx, nx)) for i in range(nx): xp = x xm = x xp[i] = x[i] + step / 2 xm[i] = x[i] - step / 2 # evaluate cost & gradients _, dfp = opf_costfcn(xp, om) _, dfm = opf_costfcn(xm, om) # evaluate constraints & gradients _, _, dHp, dGp = opf_consfcn(xp, om, Ybus, Yf, Yt, ppopt, il) _, _, dHm, dGm = opf_consfcn(xm, om, Ybus, Yf, Yt, ppopt, il) num_d2f[:, i] = cost_mult * (dfp - dfm) / step num_d2G[:, i] = (dGp - dGm) * lmbda["eqnonlin"] / step num_d2H[:, i] = (dHp - dHm) * lmbda["ineqnonlin"] / step d2f_err = max(max(abs(d2f - num_d2f))) d2G_err = max(max(abs(d2G - num_d2G))) d2H_err = max(max(abs(d2H - num_d2H))) if d2f_err > 1e-6: print('Max difference in d2f: %g' % d2f_err) if d2G_err > 1e-5: print('Max difference in d2G: %g' % d2G_err) if d2H_err > 1e-6: print('Max difference in d2H: %g' % d2H_err) return d2f + d2G + d2H
def opf_costfcn(x, om, return_hessian=False): """Evaluates objective function, gradient and Hessian for OPF. Objective function evaluation routine for AC optimal power flow, suitable for use with L{pips}. Computes objective function value, gradient and Hessian. @param x: optimization vector @param om: OPF model object @return: C{F} - value of objective function. C{df} - (optional) gradient of objective function (column vector). C{d2f} - (optional) Hessian of objective function (sparse matrix). @see: L{opf_consfcn}, L{opf_hessfcn} @author: Carlos E. Murillo-Sanchez (PSERC Cornell & Universidad Autonoma de Manizales) @author: Ray Zimmerman (PSERC Cornell) @author: Richard Lincoln """ ##----- initialize ----- ## unpack data ppc = om.get_ppc() baseMVA, gen, gencost = ppc["baseMVA"], ppc["gen"], ppc["gencost"] cp = om.get_cost_params() N, Cw, H, dd, rh, kk, mm = \ cp["N"], cp["Cw"], cp["H"], cp["dd"], cp["rh"], cp["kk"], cp["mm"] vv, _, _, _ = om.get_idx() ## problem dimensions ng = gen.shape[0] ## number of dispatchable injections ny = om.getN('var', 'y') ## number of piece-wise linear costs nxyz = len(x) ## total number of control vars of all types ## grab Pg & Qg Pg = x[vv["i1"]["Pg"]:vv["iN"]["Pg"]] ## active generation in p.u. Qg = x[vv["i1"]["Qg"]:vv["iN"]["Qg"]] ## reactive generation in p.u. ##----- evaluate objective function ----- ## polynomial cost of P and Q # use totcost only on polynomial cost in the minimization problem # formulation, pwl cost is the sum of the y variables. ipol = find(gencost[:, MODEL] == POLYNOMIAL) ## poly MW and MVAr costs xx = r_[ Pg, Qg ] * baseMVA if any(ipol): f = sum( totcost(gencost[ipol, :], xx[ipol]) ) ## cost of poly P or Q else: f = 0 ## piecewise linear cost of P and Q if ny > 0: ccost = sparse((ones(ny), (zeros(ny), arange(vv["i1"]["y"], vv["iN"]["y"]))), (1, nxyz)).toarray().flatten() f = f + dot(ccost, x) else: ccost = zeros(nxyz) ## generalized cost term if issparse(N) and N.nnz > 0: nw = N.shape[0] r = N * x - rh ## Nx - rhat iLT = find(r < -kk) ## below dead zone iEQ = find((r == 0) & (kk == 0)) ## dead zone doesn't exist iGT = find(r > kk) ## above dead zone iND = r_[iLT, iEQ, iGT] ## rows that are Not in the Dead region iL = find(dd == 1) ## rows using linear function iQ = find(dd == 2) ## rows using quadratic function LL = sparse((ones(len(iL)), (iL, iL)), (nw, nw)) QQ = sparse((ones(len(iQ)), (iQ, iQ)), (nw, nw)) kbar = sparse((r_[ones(len(iLT)), zeros(len(iEQ)), -ones(len(iGT))], (iND, iND)), (nw, nw)) * kk rr = r + kbar ## apply non-dead zone shift M = sparse((mm[iND], (iND, iND)), (nw, nw)) ## dead zone or scale diagrr = sparse((rr, (arange(nw), arange(nw))), (nw, nw)) ## linear rows multiplied by rr(i), quadratic rows by rr(i)^2 w = M * (LL + QQ * diagrr) * rr f = f + dot(w * H, w) / 2 + dot(Cw, w) ##----- evaluate cost gradient ----- ## index ranges iPg = range(vv["i1"]["Pg"], vv["iN"]["Pg"]) iQg = range(vv["i1"]["Qg"], vv["iN"]["Qg"]) ## polynomial cost of P and Q df_dPgQg = zeros(2 * ng) ## w.r.t p.u. Pg and Qg df_dPgQg[ipol] = baseMVA * polycost(gencost[ipol, :], xx[ipol], 1) df = zeros(nxyz) df[iPg] = df_dPgQg[:ng] df[iQg] = df_dPgQg[ng:ng + ng] ## piecewise linear cost of P and Q df = df + ccost # The linear cost row is additive wrt any nonlinear cost. ## generalized cost term if issparse(N) and N.nnz > 0: HwC = H * w + Cw AA = N.T * M * (LL + 2 * QQ * diagrr) df = df + AA * HwC ## numerical check if 0: ## 1 to check, 0 to skip check ddff = zeros(df.shape) step = 1e-7 tol = 1e-3 for k in range(len(x)): xx = x xx[k] = xx[k] + step ddff[k] = (opf_costfcn(xx, om) - f) / step if max(abs(ddff - df)) > tol: idx = find(abs(ddff - df) == max(abs(ddff - df))) print('Mismatch in gradient') print('idx df(num) df diff') print('%4d%16g%16g%16g' % (range(len(df)), ddff.T, df.T, abs(ddff - df).T)) print('MAX') print('%4d%16g%16g%16g' % (idx.T, ddff[idx].T, df[idx].T, abs(ddff[idx] - df[idx]).T)) if not return_hessian: return f, df ## ---- evaluate cost Hessian ----- pcost = gencost[range(ng), :] if gencost.shape[0] > ng: qcost = gencost[ng + 1:2 * ng, :] else: qcost = array([]) ## polynomial generator costs d2f_dPg2 = zeros(ng) ## w.r.t. p.u. Pg d2f_dQg2 = zeros(ng) ## w.r.t. p.u. Qg ipolp = find(pcost[:, MODEL] == POLYNOMIAL) d2f_dPg2[ipolp] = \ baseMVA**2 * polycost(pcost[ipolp, :], Pg[ipolp]*baseMVA, 2) if any(qcost): ## Qg is not free ipolq = find(qcost[:, MODEL] == POLYNOMIAL) d2f_dQg2[ipolq] = \ baseMVA**2 * polycost(qcost[ipolq, :], Qg[ipolq] * baseMVA, 2) i = r_[iPg, iQg].T d2f = sparse((r_[d2f_dPg2, d2f_dQg2], (i, i)), (nxyz, nxyz)) ## generalized cost if N is not None and issparse(N): d2f = d2f + AA * H * AA.T + 2 * N.T * M * QQ * \ sparse((HwC, (range(nw), range(nw))), (nw, nw)) * N return f, df, d2f