示例#1
0
 def test_filter_should_give_Transformable_rdd(self):
     initial_dataset = self.sc.parallelize(["1,2", "1,2", "1,3"])
     transformable_rdd = TransformableRDD(initial_dataset, "csv")
     rdd_filter = transformable_rdd.filter(
         lambda line: line.split(",")[1] != "2")
     collected = rdd_filter.collect()
     self.assertEqual(1, collected.__len__())
示例#2
0
 def test_should_smooth_data_by_Simple_Moving_Average(self):
     initial_dataset = self.sc.parallelize(
             ["52,3,53", "23,4,64", "23,5,64", "23,6,64", "23,7,64", "23,8,64", "23,9,64"], 3)
     transformable_rdd = TransformableRDD(initial_dataset, "csv")
     transformed = transformable_rdd.smooth(1, SimpleMovingAverage(3))
     excepted = 4.0
     self.assertEquals(excepted, transformed.first())
 def test_pivot_table_by_count_should_give_pivoted_table(self):
     initial_dataSet = self.sc.parallelize([
         "known,new,long,home,skips",
         "unknown,new,short,work,reads",
         "unknown,follow Up,long,work,skips",
         "known,follow Up,long,home,skips",
         "known,new,short,home,reads",
         "known,follow Up,long,work,skips",
         "unknown,follow Up,short,work,skips",
         "unknown,new,short,work,reads",
         "known,follow Up,long,home,skips",
         "known,new,long,work,skips",
         "unknown,follow Up,short,home,skips",
         "known,new,long,work,skips",
         "known,follow Up,short,home,reads",
         "known,new,short,work,reads",
         "known,new,short,home,reads",
         "known,follow Up,short,work,reads",
         "known,new,short,home,reads",
         "unknown,new,short,work,reads"
     ])
     initial_rdd = TransformableRDD(initial_dataSet, "csv")
     table = initial_rdd.pivot_by_count(4, [0, 1, 2, 3])
     entry = table.value_at("skips", "known")
     self.assertEqual(6, entry)
     self.assertEqual(3, table.value_at("skips", "unknown"))
    def test_should_split_given_column_indexes_split_by_delimiter_with_retain_column(self):
        initial_data_set = self.sc.parallelize(["FirstName LastName MiddleName,850"])
        initial_rdd = TransformableRDD(initial_data_set, "csv")

        split_with_retained_columns = initial_rdd.split_by_delimiter(0, " ", True)
        self.assertEquals("FirstName LastName MiddleName,850,FirstName,LastName,MiddleName",
                          split_with_retained_columns.first())
示例#5
0
 def test_replace_values_should_replace_cluster_values_with_given_text(self):
     initial_dataset = self.sc.parallelize(["XA,Y", "A,B", "AX,Z", "A,Q", "A,E"])
     transformable_rdd = TransformableRDD(initial_dataset)
     clusters = transformable_rdd.clusters(0, NGramFingerprintAlgorithm(1))
     one_cluster = clusters.get_all_clusters()[0]
     values = transformable_rdd.replace_values(one_cluster, "Hello", 0).collect()
     self.assertTrue(values.__contains__("Hello,B"))
 def test_to_double_rdd_should_change_string_to_double_rdd(self):
     initial_dataset = self.sc.parallelize(["1,1", "5,2", "8,3"])
     transformable_rdd = TransformableRDD(initial_dataset)
     rdd = transformable_rdd.to_double_rdd(0)
     collected = rdd.collect()
     self.assertTrue(collected.__contains__(1.0))
     self.assertTrue(collected.__contains__(5.0))
     self.assertTrue(collected.__contains__(8.0))
 def test_multiply_column_should_multiply_two_given_column(self):
     initial_dataset = self.sc.parallelize(["1,1", "1,2", "1,3"])
     transformable_rdd = TransformableRDD(initial_dataset)
     multiplied_rdd = transformable_rdd.multiply_columns(0, 1)
     collected = multiplied_rdd.collect()
     self.assertTrue(collected.__contains__(1.0))
     self.assertTrue(collected.__contains__(2.0))
     self.assertTrue(collected.__contains__(3.0))
示例#8
0
 def test_clusters_should_give_clusters_of_given_column_index(self):
     rdd = self.sc.parallelize(["CLUSTER Of Finger print", "finger print of cluster", "finger print for cluster"])
     transformable_rdd = TransformableRDD(rdd, 'csv')
     clusters = transformable_rdd.clusters(0, SimpleFingerprint())
     list_of_clusters = clusters.get_all_clusters()
     one_cluster = list_of_clusters[0]
     self.assertTrue(one_cluster.__contains__("CLUSTER Of Finger print"))
     self.assertFalse(one_cluster.__contains__("finger print for cluster"))
示例#9
0
 def test_clusters_should_give_clusters_By_n_gram_fingerprint(self):
     rdd = self.sc.parallelize(["CLUSTER Of Finger print", "finger print of cluster", "finger print for cluster"])
     transformable_rdd = TransformableRDD(rdd, 'csv')
     clusters = transformable_rdd.clusters(0, NGramFingerprintAlgorithm(1))
     list_of_clusters = clusters.get_all_clusters()
     one_cluster = list_of_clusters[0]
     self.assertTrue(one_cluster.__contains__("CLUSTER Of Finger print"))
     self.assertTrue(one_cluster.__contains__("finger print for cluster"))
示例#10
0
 def test_to_double_rdd_should_change_string_to_double_rdd(self):
     initial_dataset = self.sc.parallelize(["1,1", "5,2", "8,3"])
     transformable_rdd = TransformableRDD(initial_dataset)
     rdd = transformable_rdd.to_double_rdd(0)
     collected = rdd.collect()
     self.assertTrue(collected.__contains__(1.0))
     self.assertTrue(collected.__contains__(5.0))
     self.assertTrue(collected.__contains__(8.0))
示例#11
0
 def test_transformableRDD_can_impute_the_missing_values_by_UnivariateLinearRegressionSubstitution(
         self):
     rdd = self.sc.parallelize(
         ["60,3.1", "61,3.6", "62,3.8", "63,4", "65,4.1", "64,"])
     transformable_rdd = TransformableRDD(rdd, 'csv')
     imputed_rdd = transformable_rdd.impute(
         1, UnivariateLinearRegressionSubstitution(0))
     self.assertTrue(imputed_rdd.collect().__contains__("64,4.06"))
示例#12
0
 def test_multiply_column_should_multiply_two_given_column(self):
     initial_dataset = self.sc.parallelize(["1,1", "1,2", "1,3"])
     transformable_rdd = TransformableRDD(initial_dataset)
     multiplied_rdd = transformable_rdd.multiply_columns(0, 1)
     collected = multiplied_rdd.collect()
     self.assertTrue(collected.__contains__(1.0))
     self.assertTrue(collected.__contains__(2.0))
     self.assertTrue(collected.__contains__(3.0))
示例#13
0
    def test_should_split_given_column_indexes_split_by_delimiter(self):
        initial_data_set = self.sc.parallelize(
            ["FirstName LastName MiddleName,850"])
        initial_rdd = TransformableRDD(initial_data_set, "csv")

        splitted_columns = initial_rdd.split_by_delimiter(0, " ", False)
        self.assertEquals("850,FirstName,LastName,MiddleName",
                          splitted_columns.first())
示例#14
0
 def test_should_smooth_data_by_Simple_Moving_Average(self):
     initial_dataset = self.sc.parallelize([
         "52,3,53", "23,4,64", "23,5,64", "23,6,64", "23,7,64", "23,8,64",
         "23,9,64"
     ], 3)
     transformable_rdd = TransformableRDD(initial_dataset, "csv")
     transformed = transformable_rdd.smooth(1, SimpleMovingAverage(3))
     excepted = 4.0
     self.assertEquals(excepted, transformed.first())
示例#15
0
 def test_map_should_give_Transformable_rdd(self):
     initial_dataset = self.sc.parallelize(["1,2", "1,2", "1,3"])
     transformable_rdd = TransformableRDD(initial_dataset, "csv")
     rdd_map = transformable_rdd.map(lambda line: line + "yes")
     deduplicate = rdd_map.deduplicate()
     collected = deduplicate.collect()
     self.assertEqual(2, collected.__len__())
     expected = "1,2yes"
     self.assertTrue(collected.__contains__(expected))
 def test_map_should_give_Transformable_rdd(self):
     initial_dataset = self.sc.parallelize(["1,2", "1,2", "1,3"])
     transformable_rdd = TransformableRDD(initial_dataset, "csv")
     rdd_map = transformable_rdd.map(lambda line: line + "yes")
     deduplicate = rdd_map.deduplicate()
     collected = deduplicate.collect()
     self.assertEqual(2, collected.__len__())
     expected = "1,2yes"
     self.assertTrue(collected.__contains__(expected))
    def test_should_split_given_column_by_field_length_with_retained_columns(self):
        data = ["John,Male,21,+914382313832,Canada", "Smith, Male, 30,+015314343462, UK",
                "Larry, Male, 23,+009815432975, USA", "Fiona, Female,18,+891015709854,USA"]
        initial_data_set = self.sc.parallelize(data)
        initial_rdd = TransformableRDD(initial_data_set, "csv")

        result = initial_rdd.split_by_field_length(3, [3, 10], True).collect()

        self.assertTrue(len(result) == 4)
        self.assertTrue(result.__contains__("John,Male,21,+914382313832,Canada,+91,4382313832"))
        self.assertTrue(result.__contains__("Smith,Male,30,+015314343462,UK,+01,5314343462"))
示例#18
0
    def test_should_merge_given_column_indexes(self):
        initial_data_set = self.sc.parallelize(["FirstName,LastName,732,MiddleName"])
        initial_rdd = TransformableRDD(initial_data_set, "csv")

        joined_column_rdd = initial_rdd.merge_columns([3, 1, 0], "_", False)
        self.assertEquals("732,MiddleName_LastName_FirstName", joined_column_rdd.first())

        with_originals = initial_rdd.merge_columns([3, 1, 0], "_", True)
        self.assertEquals("FirstName,LastName,732,MiddleName,MiddleName_LastName_FirstName", with_originals.first())

        joined_column_with_defaults = initial_rdd.merge_columns([3, 1, 0])
        self.assertEquals("732,MiddleName LastName FirstName", joined_column_with_defaults.first())
 def test_transformableRDD_can_impute_the_missing_values_by_NaiveBayesSubstitution(self):
     rdd = self.sc.parallelize(["Drew,No,Blue,Short,Male",
                                "Claudia,Yes,Brown,Long,Female",
                                "Drew,No,Blue,Long,Female",
                                "Drew,No,Blue,Long,Female",
                                "Alberto,Yes,Brown,Short,Male",
                                "Karin,No,Blue,Long,Female",
                                "Nina,Yes,Brown,Short,Female",
                                "Sergio,Yes,Blue,Long,Male",
                                "Drew,Yes,Blue,Long,"])
     transformable_rdd = TransformableRDD(rdd, 'csv')
     imputed_rdd = transformable_rdd.impute(4, NaiveBayesSubstitution(0, 1, 2, 3))
     self.assertTrue(imputed_rdd.collect().__contains__("Drew,Yes,Blue,Long,Female"))
示例#20
0
 def test_transformableRDD_can_impute_the_missing_values_by_NaiveBayesSubstitution(
         self):
     rdd = self.sc.parallelize([
         "Drew,No,Blue,Short,Male", "Claudia,Yes,Brown,Long,Female",
         "Drew,No,Blue,Long,Female", "Drew,No,Blue,Long,Female",
         "Alberto,Yes,Brown,Short,Male", "Karin,No,Blue,Long,Female",
         "Nina,Yes,Brown,Short,Female", "Sergio,Yes,Blue,Long,Male",
         "Drew,Yes,Blue,Long,"
     ])
     transformable_rdd = TransformableRDD(rdd, 'csv')
     imputed_rdd = transformable_rdd.impute(
         4, NaiveBayesSubstitution(0, 1, 2, 3))
     self.assertTrue(
         imputed_rdd.collect().__contains__("Drew,Yes,Blue,Long,Female"))
    def test_should_split_the_given_column_by_delimiter_into_given_number_of_split(self):
        data = [
            "John\tMale\t21\t+91-4382-313832\tCanada",
            "Smith\tMale\t30\t+01-5314-343462\tUK",
            "Larry\tMale\t23\t+00-9815-432975\tUSA",
            "Fiona\tFemale\t18\t+89-1015-709854\tUSA"
        ]
        initial_data_set = self.sc.parallelize(data)
        initial_rdd = TransformableRDD(initial_data_set, "tsv")
        new_dataset = initial_rdd.split_by_delimiter(3, "-", False, 2)

        list_of_records = new_dataset.collect()

        self.assertEqual(4, list_of_records.__len__())
        self.assertTrue(list_of_records.__contains__("John\tMale\t21\tCanada\t+91\t4382-313832"))
        self.assertTrue(list_of_records.__contains__("Smith\tMale\t30\tUK\t+01\t5314-343462"))
示例#22
0
    def test_should_smooth_data_by_Weighted_Moving_Average(self):
        initial_dataset = self.sc.parallelize(["10", "12", "16", "13", "17", "19", "15", "20", "22", "19", "21", "19"],
                                              3)
        transformable_rdd = TransformableRDD(initial_dataset, "csv")

        weights = Weights(3)
        weights.add(0.166)
        weights.add(0.333)
        weights.add(0.5)

        moving_average = WeightedMovingAverage(3, weights)
        rdd = transformable_rdd.smooth(0, moving_average)

        expected = 13.656
        actual = rdd.first()
        self.assertEquals(expected, actual)
示例#23
0
    def test_should_split_given_column_by_field_length(self):
        data = [
            "John,Male,21,+914382313832,Canada",
            "Smith, Male, 30,+015314343462, UK",
            "Larry, Male, 23,+009815432975, USA",
            "Fiona, Female,18,+891015709854,USA"
        ]
        initial_data_set = self.sc.parallelize(data)
        initial_rdd = TransformableRDD(initial_data_set, "csv")

        result = initial_rdd.split_by_field_length(3, [3, 10], False).collect()

        self.assertTrue(len(result) == 4)
        self.assertTrue(
            result.__contains__("John,Male,21,Canada,+91,4382313832"))
        self.assertTrue(result.__contains__("Smith,Male,30,UK,+01,5314343462"))
示例#24
0
    def test_add_columns_from_should_merge_all_columns_of_other_transformable_rdd(
            self):
        initial_spelled_numbers = self.sc.parallelize([
            "One,Two,Three", "Four,Five,Six", "Seven,Eight,Nine",
            "Ten,Eleven,Twelve"
        ])
        spelled_numbers = TransformableRDD(initial_spelled_numbers, "csv")
        initial_numeric_data = self.sc.parallelize(
            ["1\t2\t3", "4\t5\t6", "7\t8\t9", "10\t11\t12"])
        numeric_data = TransformableRDD(initial_numeric_data, "tsv")

        result = spelled_numbers.add_columns_from(numeric_data).collect()

        self.assertTrue(result.__contains__("One,Two,Three,1,2,3"))
        self.assertTrue(result.__contains__("Four,Five,Six,4,5,6"))
        self.assertTrue(result.__contains__("Seven,Eight,Nine,7,8,9"))
        self.assertTrue(result.__contains__("Ten,Eleven,Twelve,10,11,12"))
示例#25
0
    def test_should_smooth_data_by_Weighted_Moving_Average(self):
        initial_dataset = self.sc.parallelize([
            "10", "12", "16", "13", "17", "19", "15", "20", "22", "19", "21",
            "19"
        ], 3)
        transformable_rdd = TransformableRDD(initial_dataset, "csv")

        weights = Weights(3)
        weights.add(0.166)
        weights.add(0.333)
        weights.add(0.5)

        moving_average = WeightedMovingAverage(3, weights)
        rdd = transformable_rdd.smooth(0, moving_average)

        expected = 13.656
        actual = rdd.first()
        self.assertEquals(expected, actual)
示例#26
0
 def test_pivot_table_by_count_should_give_pivoted_table(self):
     initial_dataSet = self.sc.parallelize([
         "known,new,long,home,skips", "unknown,new,short,work,reads",
         "unknown,follow Up,long,work,skips",
         "known,follow Up,long,home,skips", "known,new,short,home,reads",
         "known,follow Up,long,work,skips",
         "unknown,follow Up,short,work,skips",
         "unknown,new,short,work,reads", "known,follow Up,long,home,skips",
         "known,new,long,work,skips", "unknown,follow Up,short,home,skips",
         "known,new,long,work,skips", "known,follow Up,short,home,reads",
         "known,new,short,work,reads", "known,new,short,home,reads",
         "known,follow Up,short,work,reads", "known,new,short,home,reads",
         "unknown,new,short,work,reads"
     ])
     initial_rdd = TransformableRDD(initial_dataSet, "csv")
     table = initial_rdd.pivot_by_count(4, [0, 1, 2, 3])
     entry = table.value_at("skips", "known")
     self.assertEqual(6, entry)
     self.assertEqual(3, table.value_at("skips", "unknown"))
示例#27
0
    def test_should_normalize_by_Z_Score_normalization(self):
        initial_dataset = self.sc.parallelize([
            "07434677419,07371326239,Incoming,211,Wed Sep 15 19:17:44 +0100 2010",
            "07641036117,01666472054,Outgoing,0,Mon Feb 11 07:18:23 +0000 1980",
            "07641036117,07371326239,Incoming,45,Mon Feb 11 07:45:42 +0000 1980",
            "07641036117,07371326239,Incoming,45,Mon Feb 11 07:45:42 +0000 1980",
            "07641036117,07681546436,Missed,12,Mon Feb 11 08:04:42 +0000 1980"])
        transformable_rdd = TransformableRDD(initial_dataset, 'csv')
        final_rdd = transformable_rdd.normalize(3, ZScoreNormalizer())
        normalized_durations = final_rdd.select(3).collect()
        expected1 = "1.944528306701421"
        expected2 = "-0.8202659838241843"
        expected3 = "-0.2306179123850742"
        expected4 = "-0.2306179123850742"
        expected5 = "-0.6630264981070882"

        self.assertTrue(normalized_durations.__contains__(expected1))
        self.assertTrue(normalized_durations.__contains__(expected2))
        self.assertTrue(normalized_durations.__contains__(expected3))
        self.assertTrue(normalized_durations.__contains__(expected4))
        self.assertTrue(normalized_durations.__contains__(expected5))
示例#28
0
    def test_should_normalize_by_Min_Max_normalization(self):
        initial_dataset = self.sc.parallelize([
            "07434677419,07371326239,Incoming,211,Wed Sep 15 19:17:44 +0100 2010",
            "07641036117,01666472054,Outgoing,0,Mon Feb 11 07:18:23 +0000 1980",
            "07641036117,07371326239,Incoming,45,Mon Feb 11 07:45:42 +0000 1980",
            "07641036117,07371326239,Incoming,45,Mon Feb 11 07:45:42 +0000 1980",
            "07641036117,07681546436,Missed,12,Mon Feb 11 08:04:42 +0000 1980"])
        transformable_rdd = TransformableRDD(initial_dataset, 'csv')
        final_rdd = transformable_rdd.normalize(3, MinMaxNormalizer(0, 1))
        normalized_durations = final_rdd.select(3).collect()
        expected1 = "1.0"
        expected2 = "0.0"
        expected3 = "0.2132701421800948"
        expected4 = "0.2132701421800948"
        expected5 = "0.05687203791469194"

        self.assertTrue(normalized_durations.__contains__(expected1))
        self.assertTrue(normalized_durations.__contains__(expected2))
        self.assertTrue(normalized_durations.__contains__(expected3))
        self.assertTrue(normalized_durations.__contains__(expected4))
        self.assertTrue(normalized_durations.__contains__(expected5))
示例#29
0
    def test_should_split_the_given_column_by_delimiter_into_given_number_of_split(
            self):
        data = [
            "John\tMale\t21\t+91-4382-313832\tCanada",
            "Smith\tMale\t30\t+01-5314-343462\tUK",
            "Larry\tMale\t23\t+00-9815-432975\tUSA",
            "Fiona\tFemale\t18\t+89-1015-709854\tUSA"
        ]
        initial_data_set = self.sc.parallelize(data)
        initial_rdd = TransformableRDD(initial_data_set, "tsv")
        new_dataset = initial_rdd.split_by_delimiter(3, "-", False, 2)

        list_of_records = new_dataset.collect()

        self.assertEqual(4, list_of_records.__len__())
        self.assertTrue(
            list_of_records.__contains__(
                "John\tMale\t21\tCanada\t+91\t4382-313832"))
        self.assertTrue(
            list_of_records.__contains__(
                "Smith\tMale\t30\tUK\t+01\t5314-343462"))
示例#30
0
    def test_should_normalize_by_Decimal_Scale(self):
        initial_dataset = self.sc.parallelize([
            "07434677419,07371326239,Incoming,211,Wed Sep 15 19:17:44 +0100 2010",
            "07641036117,01666472054,Outgoing,0,Mon Feb 11 07:18:23 +0000 1980",
            "07641036117,07371326239,Incoming,45,Mon Feb 11 07:45:42 +0000 1980",
            "07641036117,07371326239,Incoming,45,Mon Feb 11 07:45:42 +0000 1980",
            "07641036117,07681546436,Missed,12,Mon Feb 11 08:04:42 +0000 1980"])
        transformable_rdd = TransformableRDD(initial_dataset, 'csv')
        final_rdd = transformable_rdd.normalize(3, DecimalScalingNormalizer())
        normalized_durations = final_rdd.select(3).collect()
        expected1 = "2.11"
        expected2 = "0.0"
        expected3 = "0.45"
        expected4 = "0.45"
        expected5 = "0.12"

        self.assertTrue(normalized_durations.__contains__(expected1))
        self.assertTrue(normalized_durations.__contains__(expected2))
        self.assertTrue(normalized_durations.__contains__(expected3))
        self.assertTrue(normalized_durations.__contains__(expected4))
        self.assertTrue(normalized_durations.__contains__(expected5))
    def test_add_columns_from_should_merge_all_columns_of_other_transformable_rdd(self):
        initial_spelled_numbers = self.sc.parallelize([
            "One,Two,Three",
            "Four,Five,Six",
            "Seven,Eight,Nine",
            "Ten,Eleven,Twelve"
        ])
        spelled_numbers = TransformableRDD(initial_spelled_numbers, "csv")
        initial_numeric_data = self.sc.parallelize([
            "1\t2\t3",
            "4\t5\t6",
            "7\t8\t9",
            "10\t11\t12"
        ])
        numeric_data = TransformableRDD(initial_numeric_data, "tsv")

        result = spelled_numbers.add_columns_from(numeric_data).collect()

        self.assertTrue(result.__contains__("One,Two,Three,1,2,3"))
        self.assertTrue(result.__contains__("Four,Five,Six,4,5,6"))
        self.assertTrue(result.__contains__("Seven,Eight,Nine,7,8,9"))
        self.assertTrue(result.__contains__("Ten,Eleven,Twelve,10,11,12"))
 def test_filter_should_give_Transformable_rdd(self):
     initial_dataset = self.sc.parallelize(["1,2", "1,2", "1,3"])
     transformable_rdd = TransformableRDD(initial_dataset, "csv")
     rdd_filter = transformable_rdd.filter(lambda line: line.split(",")[1] != "2")
     collected = rdd_filter.collect()
     self.assertEqual(1, collected.__len__())
示例#33
0
 def test_get_duplicates_should_give_duplicates_of_given_column_indexes(
         self):
     rdd = self.sc.parallelize(["Ram,23", "Ram,23", "Jill,45", "Soa,"])
     transformable_rdd = TransformableRDD(rdd, 'csv')
     duplicates = transformable_rdd.get_duplicates([0])
     self.assertEqual("Ram,23", duplicates.first())
示例#34
0
 def test_drop_column_should_drop_the_given_column(self):
     rdd = self.sc.parallelize(
         ["Ram,23,Male", "Ram,23,Male", "Jill,45,Female", "Soa,,Female,"])
     transformable_rdd = TransformableRDD(rdd, 'csv')
     dropped = transformable_rdd.drop_column(1)
     self.assertEqual("Ram,Male", dropped.first())
 def test_get_duplicates_should_give_duplicates_of_given_column_indexes(self):
     rdd = self.sc.parallelize(["Ram,23", "Ram,23", "Jill,45", "Soa,"])
     transformable_rdd = TransformableRDD(rdd, 'csv')
     duplicates = transformable_rdd.get_duplicates([0])
     self.assertEqual("Ram,23", duplicates.first())
示例#36
0
 def test_transformableRDD_gives_a_count_of_element(self):
     rdd = self.sc.parallelize(["2", "3", "4", "5", "6", "7", "7", "7"])
     transformable_rdd = TransformableRDD(rdd, 'csv')
     self.assertEquals(8, transformable_rdd.count())
示例#37
0
 def test_transformableRDD_can_impute_the_missing_values_by_ApproxMeanSubstitution(
         self):
     rdd = self.sc.parallelize(["Ram,9", "Joe,45", "Jill,45", "Soa,"])
     transformable_rdd = TransformableRDD(rdd, 'csv')
     imputed_rdd = transformable_rdd.impute(1, ApproxMeanSubstitution())
     self.assertTrue(imputed_rdd.collect().__contains__("Soa,33.0"))
 def test_transformableRDD_can_deduplicate_by_given_column_index(self):
     rdd = self.sc.parallelize(["2", "3", "4", "5", "6", "7", "7", "7"])
     transformable_rdd = TransformableRDD(rdd, 'csv')
     deduplicate_rdd = transformable_rdd.deduplicate([0])
     self.assertEquals(6, deduplicate_rdd.count())
 def test_drop_column_should_drop_the_given_column(self):
     rdd = self.sc.parallelize(["Ram,23,Male", "Ram,23,Male", "Jill,45,Female", "Soa,,Female,"])
     transformable_rdd = TransformableRDD(rdd, 'csv')
     dropped = transformable_rdd.drop_column(1)
     self.assertEqual("Ram,Male", dropped.first())
 def test_transformableRDD_gives_a_count_of_element(self):
     rdd = self.sc.parallelize(["2", "3", "4", "5", "6", "7", "7", "7"])
     transformable_rdd = TransformableRDD(rdd, 'csv')
     self.assertEquals(8, transformable_rdd.count())
 def test_transformableRDD_can_impute_the_missing_values_by_ApproxMeanSubstitution(self):
     rdd = self.sc.parallelize(["Ram,9", "Joe,45", "Jill,45", "Soa,"])
     transformable_rdd = TransformableRDD(rdd, 'csv')
     imputed_rdd = transformable_rdd.impute(1, ApproxMeanSubstitution())
     self.assertTrue(imputed_rdd.collect().__contains__("Soa,33.0"))
示例#42
0
 def test_list_facets_should_give_facets_of_given_column_indexes(self):
     rdd = self.sc.parallelize(["Ram,23,Male", "Ram,23,Male", "Jill,45,Female", "Soa,,Female,"])
     transformable_rdd = TransformableRDD(rdd, 'csv')
     duplicates = transformable_rdd.list_facets([0, 1, 2])
     highest = duplicates.highest()
     self.assertEqual("Ram,23,Male", highest[0]._1())
 def test_transformableRDD_can_collect_all_the_elements(self):
     rdd = self.sc.parallelize(["2", "3", "4", "5", "6", "7", "7", "7"])
     transformable_rdd = TransformableRDD(rdd, 'csv')
     self.assertEquals(["2", "3", "4", "5", "6", "7", "7", "7"], transformable_rdd.collect())
示例#44
0
 def test_list_facets_should_give_facets(self):
     initial_dataset = self.sc.parallelize(["X,Y", "A,B", "X,Z", "A,Q", "A,E"])
     transformable_rdd = TransformableRDD(initial_dataset)
     text_facets = transformable_rdd.list_facets_of(0)
     self.assertEquals(2, text_facets.count())
示例#45
0
 def test_transformableRDD_can_collect_all_the_elements(self):
     rdd = self.sc.parallelize(["2", "3", "4", "5", "6", "7", "7", "7"])
     transformable_rdd = TransformableRDD(rdd, 'csv')
     self.assertEquals(["2", "3", "4", "5", "6", "7", "7", "7"],
                       transformable_rdd.collect())
示例#46
0
    def test_number_of_column_should_give_number_of_column_of_dataset(self):
        initial_dataset = self.sc.parallelize(["1,2", "1,2", "1,3"])
        transformable_rdd = TransformableRDD(initial_dataset, "csv")

        self.assertEqual(2, transformable_rdd.number_of_columns())
示例#47
0
 def test_should_give_highest_of_facets(self):
     initial_dataset = self.sc.parallelize(["X,Y", "A,B", "X,Z", "A,Q", "A,E"])
     transformable_rdd = TransformableRDD(initial_dataset)
     text_facets = transformable_rdd.list_facets_of(0)
     highest = text_facets.highest()
     self.assertEqual("A", highest[0]._1())
示例#48
0
 def test_transformableRDD_can_deduplicate_by_given_column_index(self):
     rdd = self.sc.parallelize(["2", "3", "4", "5", "6", "7", "7", "7"])
     transformable_rdd = TransformableRDD(rdd, 'csv')
     deduplicate_rdd = transformable_rdd.deduplicate([0])
     self.assertEquals(6, deduplicate_rdd.count())
示例#49
0
 def test_exception_for_text_Facets(self):
     initial_dataset = self.sc.parallelize(["1,2", "1,2", "1,3"])
     transformable_rdd = TransformableRDD(initial_dataset, "csv")
     self.assertRaises(ApplicationException, transformable_rdd.list_facets_of, 4)
    def test_number_of_column_should_give_number_of_column_of_dataset(self):
        initial_dataset = self.sc.parallelize(["1,2", "1,2", "1,3"])
        transformable_rdd = TransformableRDD(initial_dataset, "csv")

        self.assertEqual(2, transformable_rdd.number_of_columns())
 def test_transformableRDD_can_impute_the_missing_values_by_UnivariateLinearRegressionSubstitution(self):
     rdd = self.sc.parallelize(["60,3.1", "61,3.6", "62,3.8", "63,4", "65,4.1", "64,"])
     transformable_rdd = TransformableRDD(rdd, 'csv')
     imputed_rdd = transformable_rdd.impute(1, UnivariateLinearRegressionSubstitution(0))
     self.assertTrue(imputed_rdd.collect().__contains__("64,4.06"))