def plot_matrix(self, parameters): matrix_image_file_path = os.path.join(self.workspaceHandler["matrix"], parameters["data"]["matrix"]["image"]["filename"]) max_dim = parameters.get_value("data.matrix.image.dimension", default_value = 1000) plotTools.matrixToImage(self.matrixHandler.distance_matrix, matrix_image_file_path, max_dim=max_dim, observer=self.observer) self.generatedFiles.append({"description":"Matrix image", "path":os.path.abspath(matrix_image_file_path), "type":"image"})
def create_matrix(self, parameters): self.matrixHandler = MatrixHandler(parameters["data"]["matrix"]) self.notify("Matrix calculation", []) self.timer.start("Matrix Generation") self.matrixHandler.create_matrix(self.trajectoryHandler) statistics_file_path = self.matrixHandler.save_statistics(self.workspaceHandler["matrix"]) self.generatedFiles.append({"description":"Matrix statistics", "path":os.path.abspath(statistics_file_path), "type":"text"}) self.timer.stop("Matrix Generation") if "filename" in parameters["data"]["matrix"]: self.timer.start("Matrix Save") self.matrixHandler.save_matrix(os.path.join(self.workspaceHandler["matrix"], parameters["data"]["matrix"]["filename"])) self.timer.stop("Matrix Save") ######################### # Matrix plot ######################### if "image" in parameters["data"]["matrix"].keys(): self.timer.start("Matrix Imaging") matrix_image_file_path = os.path.join(self.workspaceHandler["matrix"], parameters["data"]["matrix"]["image"]["filename"]) max_dim = parameters["data"]["matrix"]["image"]["dimension"] if "dimension" in parameters["data"]["matrix"]["image"] else 1000 plotTools.matrixToImage(self.matrixHandler.distance_matrix, matrix_image_file_path, max_dim=max_dim, observer=self.observer) self.generatedFiles.append({"description":"Matrix image", "path":os.path.abspath(matrix_image_file_path), "type":"image"}) self.timer.stop("Matrix Imaging")
def plot_matrix(cls, matrix_handler, workspace_handler, parameters, generated_files): matrix_image_file_path = os.path.join(workspace_handler["matrix"], parameters["image"]["filename"]) max_dim = parameters.get_value("image.dimension", default_value = 1000) plotTools.matrixToImage(matrix_handler.distance_matrix, matrix_image_file_path, max_dim=max_dim) generated_files.append({ "description":"Matrix image", "path":os.path.abspath(matrix_image_file_path), "type":"image" })
def process_matrix(folders, image_path, sim_type): data = [] for i in range(0,len(folders)-1): A_folder = folders[i] for j in range(i+1,len(campari_folders)): B_folder = folders[j] results_file = os.path.join("comparisons",sim_type, "%svs%s"%(A_folder, B_folder), "results", "conf_space_comp.json") print results_file if os.path.exists(results_file): data.append(load_dic_in_json(results_file)["overlap"]) else: data.append(0.) print data matrixToImage(CondensedMatrix(data), image_path, diagonal_value=1.)
def print_matrix(input_coordsets, output): # Generate the matrix and print it calculator = RMSDCalculator(calculatorType="QCP_OMP_CALCULATOR", fittingCoordsets=input_coordsets) matrixToImage(CondensedMatrix(calculator.pairwiseRMSDMatrix()), output + ".png")
parameters["data"]["files"] = [sys.argv[1], sys.argv[2]] frames_ini = get_number_of_frames(sys.argv[1]) frames_proto = get_number_of_frames(sys.argv[2]) print sys.argv[1],"->",frames_ini print sys.argv[2],"->",frames_proto try: Driver(Observer()).run(parameters) except SystemExit: # Expected improductive search # Load again the matrix handler = MatrixHandler({ "method": "load", "parameters": { "path": parameters["workspace"]["base"]+"/matrix/matrix" } }) matrix = handler.create_matrix(None) submatrix = get_submatrix(matrix, range(frames_ini,frames_ini+frames_proto)) matrixToImage(submatrix, parameters["workspace"]["base"] +"/submatrix.png") print "Original mean:",get_submatrix(matrix, range(0,frames_ini)).calculateMean() values = [] for i in range(0,frames_ini): for j in range(frames_ini,frames_ini+frames_proto): values.append((handler.distance_matrix[i,j],i,j-frames_ini)) for d,i,j in sorted(values): print "%d %d %.2f"% (i,j,d) print "Combined mean:", numpy.mean(values)
print sys.argv[1], "->", frames_ini print sys.argv[2], "->", frames_proto try: Driver(Observer()).run(parameters) except SystemExit: # Expected improductive search # Load again the matrix handler = MatrixHandler({ "method": "load", "parameters": { "path": parameters["workspace"]["base"] + "/matrix/matrix" } }) matrix = handler.create_matrix(None) submatrix = get_submatrix(matrix, range(frames_ini, frames_ini + frames_proto)) matrixToImage(submatrix, parameters["workspace"]["base"] + "/submatrix.png") print "Original mean:", get_submatrix(matrix, range( 0, frames_ini)).calculateMean() values = [] for i in range(0, frames_ini): for j in range(frames_ini, frames_ini + frames_proto): values.append((handler.distance_matrix[i, j], i, j - frames_ini)) for d, i, j in sorted(values): print "%d %d %.2f" % (i, j, d) print "Combined mean:", numpy.mean(values)
def print_matrix(input_coordsets, output): # Generate the matrix and print it calculator = RMSDCalculator(calculatorType="QCP_OMP_CALCULATOR", fittingCoordsets = input_coordsets) matrixToImage(CondensedMatrix(calculator.pairwiseRMSDMatrix()), output + ".png")