示例#1
0
def override_component_attrs(directory):
    """Tell PyPSA that links can have multiple outputs by
    overriding the component_attrs. This can be done for
    as many buses as you need with format busi for i = 2,3,4,5,....
    See https://pypsa.org/doc/components.html#link-with-multiple-outputs-or-inputs

    Parameters
    ----------
    directory : string
        Folder where component attributes to override are stored 
        analogous to ``pypsa/component_attrs``, e.g. `links.csv`.

    Returns
    -------
    Dictionary of overriden component attributes.
    """

    attrs = Dict({k: v.copy() for k, v in component_attrs.items()})

    for component, list_name in components.list_name.items():
        fn = f"{directory}/{list_name}.csv"
        if os.path.isfile(fn):
            overrides = pd.read_csv(fn, index_col=0, na_values="n/a")
            attrs[component] = overrides.combine_first(attrs[component])

    return attrs
示例#2
0
def approximate(pcs, M=0):
    '''
    Approximation for decomposition components, with updated mean value. The
    latter changes as it consists of the mean values of none included components.
    '''
    vec = pcs.vec.loc[:, :M]
    val = pcs.val[:M]
    beta = pcs.beta.loc[:, :M]
    mean = pcs.mean
    mean = mean - (mean @ vec * vec).sum(1)
    return Dict(vec=vec, val=val, beta=beta, mean=mean)
示例#3
0
def decomposition_pcs(df, abbrev=None):
    '''
    PCA without substracting mean without scaling the covariance matrix. The
    eigenvalues of those components reflect the real variance covered by the
    components.
    '''
    mean = df.mean()
    C = covariance(df)
    val, vec = eig(C)
    beta = df @ vec
    return Dict(vec=vec, val=val, beta=beta, mean=mean, C=C, abbr=abbrev)
def mock_snakemake(rulename, **wildcards):
    """
    This function is expected to be executed from the 'scripts'-directory of '
    the snakemake project. It returns a snakemake.script.Snakemake object,
    based on the Snakefile.

    If a rule has wildcards, you have to specify them in **wildcards.

    Parameters
    ----------
    rulename: str
        name of the rule for which the snakemake object should be generated
    **wildcards:
        keyword arguments fixing the wildcards. Only necessary if wildcards are
        needed.
    """
    import snakemake as sm
    import os
    from pypsa.descriptors import Dict
    from snakemake.script import Snakemake

    script_dir = Path(__file__).parent.resolve()
    assert Path.cwd().resolve() == script_dir, \
      f'mock_snakemake has to be run from the repository scripts directory {script_dir}'
    os.chdir(script_dir.parent)
    for p in sm.SNAKEFILE_CHOICES:
        if os.path.exists(p):
            snakefile = p
            break
    workflow = sm.Workflow(snakefile)
    workflow.include(snakefile)
    workflow.global_resources = {}
    rule = workflow.get_rule(rulename)
    dag = sm.dag.DAG(workflow, rules=[rule])
    wc = Dict(wildcards)
    job = sm.jobs.Job(rule, dag, wc)

    def make_accessable(*ios):
        for io in ios:
            for i in range(len(io)):
                io[i] = os.path.abspath(io[i])

    make_accessable(job.input, job.output, job.log)
    snakemake = Snakemake(job.input, job.output, job.params, job.wildcards,
                          job.threads, job.resources, job.log,
                          job.dag.workflow.config, job.rule.name, None,)
    # create log and output dir if not existent
    for path in list(snakemake.log) + list(snakemake.output):
        Path(path).parent.mkdir(parents=True, exist_ok=True)

    os.chdir(script_dir)
    return snakemake
def load_network(import_name=None, custom_components=None):
    """
    Helper for importing a pypsa.Network with additional custom components.

    Parameters
    ----------
    import_name : str
        As in pypsa.Network(import_name)
    custom_components : dict
        Dictionary listing custom components.
        For using ``snakemake.config["override_components"]``
        in ``config.yaml`` define:

        .. code:: yaml

            override_components:
                ShadowPrice:
                    component: ["shadow_prices","Shadow price for a global constraint.",np.nan]
                    attributes:
                    name: ["string","n/a","n/a","Unique name","Input (required)"]
                    value: ["float","n/a",0.,"shadow value","Output"]

    Returns
    -------
    pypsa.Network
    """
    import pypsa
    from pypsa.descriptors import Dict

    override_components = None
    override_component_attrs = None

    if custom_components is not None:
        override_components = pypsa.components.components.copy()
        override_component_attrs = Dict(
            {k: v.copy() for k, v in pypsa.components.component_attrs.items()}
        )
        for k, v in custom_components.items():
            override_components.loc[k] = v["component"]
            override_component_attrs[k] = pd.DataFrame(
                columns=["type", "unit", "default", "description", "status"]
            )
            for attr, val in v["attributes"].items():
                override_component_attrs[k].loc[attr] = val

    return pypsa.Network(
        import_name=import_name,
        override_components=override_components,
        override_component_attrs=override_component_attrs,
    )
示例#6
0
def variance_pcs(df, abbrev=None):
    '''
    Ordinary PCA with substracting mean from original data set and scaling of the
    Covariance matrix.
    '''
    mean = df.mean()
    C = covariance(df - mean)
    trace = np.trace(C)
    C /= trace
    val, vec = eig(C)
    beta = (df - df.mean()) @ vec
    return Dict(vec=vec,
                val=val,
                beta=beta,
                mean=mean,
                C=C,
                abbr=abbrev,
                trace=trace)
示例#7
0
    fig.tight_layout()

    fig.savefig("paper_graphics/{}/compare-sys_cost-co2-{}.pdf".format(
        scenario, scenario),
                transparent=True)


if __name__ == "__main__":
    # Detect running outside of snakemake and mock snakemake for testing
    if 'snakemake' in globals():
        fn = snakemake.input["summary"]
        config = snakemake.config
    else:
        from pypsa.descriptors import Dict
        config = Dict()
        config["run"] = "190919-final"
        config["results_dir"] = "results"
        fn = "{}/{}/csvs/summary.csv".format(config["results_dir"],
                                             config["run"])

    scenario = config["run"]

    df = pd.read_csv(fn, index_col=[0, 1])

    assumptions = "wind1040-sola510"
    pen = "075"
    ylim_comparison = 140.

    for policy in [
            "pen{}{}-{}-nuclNone-lCCSNone".format(pen, "{}", assumptions),
import pypsa, pandas as pd, numpy as np

from pypsa.descriptors import Dict

from pyomo.environ import Constraint

override_components = pypsa.components.components.copy()
override_components.loc["ShadowPrice"] = [
    "shadow_prices", "Shadow price for a global constraint.", np.nan
]
override_components.loc["CHP"] = [
    "chps", "Combined heat and power plant.", np.nan
]

override_component_attrs = Dict(
    {k: v.copy()
     for k, v in pypsa.components.component_attrs.items()})
override_component_attrs["ShadowPrice"] = pd.DataFrame(
    columns=["type", "unit", "default", "description", "status"])
override_component_attrs["ShadowPrice"].loc["name"] = [
    "string", "n/a", "n/a", "Unique name", "Input (required)"
]
override_component_attrs["ShadowPrice"].loc["value"] = [
    "float", "n/a", 0., "shadow value", "Output"
]

override_component_attrs["CHP"] = pd.DataFrame(
    columns=["type", "unit", "default", "description", "status"])
override_component_attrs["CHP"].loc["name"] = [
    "string", "n/a", "n/a", "Unique name", "Input (required)"
]
示例#9
0
                network.generators.p_nom_opt).sum()
            used = network.generators_t.p.sum()
            curtailment = (available - used) / available
            load = network.loads_t.p.sum().sum()
            supply = available / load
            stats.loc["wcurt", (scenario, ct)] = curtailment[ct + " wind"]
            stats.loc["scurt", (scenario, ct)] = curtailment[ct + " solar"]
            stats.loc["wsupply", (scenario, ct)] = supply[ct + " wind"]
            stats.loc["ssupply", (scenario, ct)] = supply[ct + " solar"]

    stats.to_csv(snakemake.output[0])


if __name__ == "__main__":

    # Detect running outside of snakemake and mock snakemake for testing
    if 'snakemake' not in globals():
        from pypsa.descriptors import Dict
        import yaml

        snakemake = Dict()

        with open('config.yaml') as f:
            snakemake.config = yaml.load(f)

        snakemake["output"] = [
            "{}summary.csv".format(snakemake.config["results_dir"])
        ]

    make_csv()
示例#10
0
    network.consistency_check()

    network.lopf(solver_name=solver_name,
                 solver_options=solver_options,
                 extra_functionality=extra_functionality)

    network.export_to_netcdf(snakemake.output[0])

    return network

if __name__ == "__main__":

    # Detect running outside of snakemake and mock up snakemake for testing
    if 'snakemake' not in globals():
        from pypsa.descriptors import Dict
        import yaml

        snakemake = Dict()

        with open('config.yaml') as f:
            snakemake.config = yaml.load(f)

        snakemake["wildcards"] = Dict({ "country" : "DE",
                                        "scenario" : "2020"})

        snakemake["output"] = ["results/{}-{}.nc".format(snakemake.wildcards.country,
                                                         snakemake.wildcards.scenario)]

    network = solve_network(snakemake.wildcards.country,
                            snakemake.wildcards.scenario)