示例#1
0
def find_basis_evaluate(mfchk, hdf_opt, hdf_vmc, hdf_final):
    """Given a wave function in hdf_opt, compute the 1-RDM (stored in hdf_vmc) , generate a minimal atomic basis and compute the energy/OBDM/TBDM and store in hdf_final """
    from pyqmc.obdm import OBDMAccumulator
    from pyqmc.tbdm import TBDMAccumulator
    from pyqmc import EnergyAccumulator

    sys = pyqmc_from_hdf(mfchk)

    mol = sys["mol"]
    a = lo.orth_ao(mol, "lowdin")
    obdm_up = OBDMAccumulator(mol=mol, orb_coeff=a, spin=0)
    obdm_down = OBDMAccumulator(mol=mol, orb_coeff=a, spin=1)
    with h5py.File(hdf_opt, "r") as hdf_in:
        if f"wf" in hdf_in.keys():
            print("reading in wave function")
            grp = hdf_in[f"wf"]
            for k in grp.keys():
                sys["wf"].parameters[k] = np.array(grp[k])

    configs = pyqmc.initial_guess(sys["mol"], 1000)
    pyqmc.vmc(
        sys["wf"],
        configs,
        nsteps=500,
        hdf_file=hdf_vmc,
        accumulators={
            "obdm_up": obdm_up,
            "obdm_down": obdm_down
        },
    )

    with h5py.File(hdf_vmc, "r") as vmc_hdf:
        obdm_up = np.mean(np.array(vmc_hdf["obdm_upvalue"]), axis=0)
        obdm_down = np.mean(np.array(vmc_hdf["obdm_downvalue"]), axis=0)
    basis_up = gen_basis(mol, sys["mf"], obdm_up)
    basis_down = gen_basis(mol, sys["mf"], obdm_down)
    obdm_up_acc = OBDMAccumulator(mol=mol, orb_coeff=basis_up, spin=0)
    obdm_down_acc = OBDMAccumulator(mol=mol, orb_coeff=basis_down, spin=1)
    tbdm = TBDMAccumulator(mol, np.array([basis_up, basis_down]), spin=(0, 1))
    acc = {
        "energy": EnergyAccumulator(mol),
        "obdm_up": obdm_up_acc,
        "obdm_down": obdm_down_acc,
        "tbdm": tbdm,
    }

    configs = pyqmc.initial_guess(sys["mol"], 1000)
    pyqmc.vmc(sys["wf"],
              configs,
              nsteps=500,
              hdf_file=hdf_final,
              accumulators=acc)
示例#2
0
 def dmc(self, nconfig=1000, **kwargs):
     configs = pyqmc.initial_guess(self.mol, nconfig)
     if self.client is None:
         pyqmc.vmc(self.wf, configs, nsteps=10)
         pyqmc.rundmc(
             self.wf,
             configs,
             accumulators={"energy": pyqmc.EnergyAccumulator(self.mol)},
             **kwargs,
         )
     else:
         pyqmc.dasktools.distvmc(
             self.wf,
             configs,
             nsteps=10,
             client=self.client,
             npartitions=self.npartitions,
         )
         pyqmc.rundmc(
             self.wf,
             configs,
             accumulators={"energy": pyqmc.EnergyAccumulator(self.mol)},
             propagate=pyqmc.dasktools.distdmc_propagate,
             **kwargs,
             client=self.client,
             npartitions=self.npartitions,
         )
示例#3
0
def optimize_excited(mc_anchors, mc_calc, nconfig = 1000, **kwargs):
    acc = pyqmc.gradient_generator(mc_calc['mol'], mc_calc['wf'], to_opt=mc_calc['to_opt'])
    wfs = [x['wf'] for x in mc_anchors]
    wfs.append(mc_calc['wf'])
    configs = pyqmc.initial_guess(mc_calc['mol'], nconfig)

    pyqmc.optimize_orthogonal.optimize_orthogonal(wfs,configs, acc, **kwargs)
示例#4
0
def test_transform():
    """ Just prints things out; 
    TODO: figure out a thing to test.
    """
    from pyscf import gto, scf
    import pyqmc

    r = 1.54 / .529177
    mol = gto.M(atom='H 0. 0. 0.; H 0. 0. %g' % r,
                ecp='bfd',
                basis='bfd_vtz',
                unit='bohr',
                verbose=1)
    mf = scf.RHF(mol).run()
    wf = pyqmc.slater_jastrow(mol, mf)
    enacc = pyqmc.EnergyAccumulator(mol)
    print(list(wf.parameters.keys()))
    transform = LinearTransform(wf.parameters)
    x = transform.serialize_parameters(wf.parameters)

    nconfig = 10
    configs = pyqmc.initial_guess(mol, nconfig)
    wf.recompute(configs)
    pgrad = wf.pgradient()
    gradtrans = transform.serialize_gradients(pgrad)
    assert gradtrans.shape[1] == len(x)
    assert gradtrans.shape[0] == nconfig
示例#5
0
def test_transform():
    """ Just prints things out; 
    TODO: figure out a thing to test.
    """
    from pyscf import gto, scf

    r = 1.54 / 0.529177
    mol = gto.M(
        atom="H 0. 0. 0.; H 0. 0. %g" % r,
        ecp="bfd",
        basis="bfd_vtz",
        unit="bohr",
        verbose=1,
    )
    mf = scf.RHF(mol).run()
    wf, to_opt = pyqmc.default_sj(mol, mf)
    enacc = pyqmc.EnergyAccumulator(mol)
    print(list(wf.parameters.keys()))
    transform = LinearTransform(wf.parameters)
    x = transform.serialize_parameters(wf.parameters)

    nconfig = 10
    configs = pyqmc.initial_guess(mol, nconfig)
    wf.recompute(configs)
    pgrad = wf.pgradient()
    gradtrans = transform.serialize_gradients(pgrad)
    assert gradtrans.shape[1] == len(x)
    assert gradtrans.shape[0] == nconfig
示例#6
0
def test_pbc_wfs():
    """
    Ensure that the wave function objects are consistent in several situations.
    """

    from pyscf.pbc import lib, gto, scf
    from pyqmc.supercell import get_supercell
    from pyqmc.slater import Slater
    from pyqmc.multiplywf import MultiplyWF
    from pyqmc import default_jastrow
    import pyqmc

    mol = gto.M(
        atom="H 0. 0. 0.; H 1. 1. 1.",
        basis="sto-3g",
        unit="bohr",
        a=(np.ones((3, 3)) - np.eye(3)) * 4,
    )
    mf = scf.KRKS(mol, mol.make_kpts((2, 2, 2))).run()
    # mf_rohf = scf.KROKS(mol).run()
    # mf_uhf = scf.KUKS(mol).run()
    epsilon = 1e-5
    nconf = 10
    supercell = get_supercell(mol, S=(np.ones((3, 3)) - 2 * np.eye(3)))
    epos = pyqmc.initial_guess(supercell, nconf)
    # For multislaterpbc
    # kinds = 0, 3, 5, 6  # G, X, Y, Z
    # d1 = {kind: [0] for kind in kinds}
    # d2 = d1.copy()
    # d2.update({0: [], 3: [0, 1]})
    # detwt = [2 ** 0.5, 2 ** 0.5]
    # occup = [[d1, d2], [d1]]
    # map_dets = [[0, 1], [0, 0]]
    for wf in [
        MultiplyWF(Slater(supercell, mf), default_jastrow(supercell)[0]),
        Slater(supercell, mf),
    ]:
        for k in wf.parameters:
            if "mo_coeff" not in k and k != "det_coeff":
                wf.parameters[k] = np.random.rand(*wf.parameters[k].shape)

        _, epos = pyqmc.vmc(wf, epos, nblocks=1, nsteps=2, tstep=1)  # move off node

        for fname, func in zip(
            ["gradient", "laplacian", "pgradient"],
            [
                testwf.test_wf_gradient,
                testwf.test_wf_laplacian,
                testwf.test_wf_pgradient,
            ],
        ):
            err = []
            for delta in [1e-4, 1e-5, 1e-6, 1e-7, 1e-8]:
                err.append(func(wf, epos, delta))
            print(type(wf), fname, min(err))
            assert min(err) < epsilon

        for k, item in testwf.test_updateinternals(wf, epos).items():
            print(k, item)
            assert item < epsilon
示例#7
0
def OPTIMIZE(
    dft_checkfile,
    output,
    nconfig=1000,
    start_from=None,
    S=None,
    client=None,
    npartitions=None,
    jastrow_kws=None,
    slater_kws=None,
    linemin_kws=None,
):
    if linemin_kws is None:
        linemin_kws = {}
    mol, mf = pyqmc.recover_pyscf(dft_checkfile)
    if S is not None:
        mol = pyqmc.get_supercell(mol, np.asarray(S))

    wf, to_opt = pyqmc.generate_wf(mol,
                                   mf,
                                   jastrow_kws=jastrow_kws,
                                   slater_kws=slater_kws)
    if start_from is not None:
        pyqmc.read_wf(wf, start_from)

    configs = pyqmc.initial_guess(mol, nconfig)
    acc = pyqmc.gradient_generator(mol, wf, to_opt)
    pyqmc.line_minimization(wf,
                            configs,
                            acc,
                            verbose=True,
                            hdf_file=output,
                            client=client,
                            npartitions=npartitions,
                            **linemin_kws)
示例#8
0
def DMC(dft_checkfile,
        output,
        nconfig=1000,
        start_from=None,
        S=None,
        client=None,
        npartitions=None,
        jastrow_kws=None,
        slater_kws=None,
        dmc_kws=None,
        accumulators=None):
    if dmc_kws is None:
        dmc_kws = {}
    mol, mf = pyqmc.recover_pyscf(dft_checkfile)
    if S is not None:
        mol = pyqmc.get_supercell(mol, np.asarray(S))

    wf, _ = pyqmc.generate_wf(mol,
                              mf,
                              jastrow_kws=jastrow_kws,
                              slater_kws=slater_kws)

    if start_from is not None:
        pyqmc.read_wf(wf, start_from)

    configs = pyqmc.initial_guess(mol, nconfig)

    pyqmc.rundmc(wf,
                 configs,
                 accumulators=generate_accumulators(mol, mf, **accumulators),
                 verbose=True,
                 hdf_file=output,
                 client=client,
                 npartitions=npartitions,
                 **dmc_kws)
示例#9
0
def OPTIMIZE(
    dft_checkfile,
    output,
    anchors=None,
    nconfig=1000,
    ci_checkfile=None,
    start_from=None,
    S=None,
    client=None,
    npartitions=None,
    jastrow_kws=None,
    slater_kws=None,
    linemin_kws=None,
):
    if linemin_kws is None:
        linemin_kws = {}

    target_root = 0
    if ci_checkfile is None:
        mol, mf = pyqmc.recover_pyscf(dft_checkfile)
        mc = None
    else:
        mol, mf, mc = pyqmc.recover_pyscf(dft_checkfile,
                                          ci_checkfile=ci_checkfile)
        mc.ci = mc.ci[target_root]

    if S is not None:
        mol = pyqmc.get_supercell(mol, np.asarray(S))

    wf, to_opt = pyqmc.generate_wf(mol,
                                   mf,
                                   mc=mc,
                                   jastrow_kws=jastrow_kws,
                                   slater_kws=slater_kws)
    if start_from is not None:
        pyqmc.read_wf(wf, start_from)

    configs = pyqmc.initial_guess(mol, nconfig)
    acc = pyqmc.gradient_generator(mol, wf, to_opt)
    if anchors is None:
        pyqmc.line_minimization(wf,
                                configs,
                                acc,
                                verbose=True,
                                hdf_file=output,
                                client=client,
                                npartitions=npartitions,
                                **linemin_kws)
    else:
        wfs = [pyqmc.read_wf(copy.deepcopy(wf), a) for a in anchors]
        wfs.append(wf)
        pyqmc.optimize_orthogonal(
            wfs,
            configs,
            acc,
            # verbose=True,
            hdf_file=output,
            client=client,
            npartitions=npartitions,
            **linemin_kws)
示例#10
0
文件: coord.py 项目: sapatha2/pyqmc
def test():
    from pyscf.pbc import gto, scf
    import pyqmc
    import pandas as pd

    L = 4
    mol = gto.M(
        atom="""H     {0}      {0}      {0}""".format(0.0),
        basis="sto-3g",
        a=np.eye(3) * L,
        spin=1,
        unit="bohr",
    )
    mf = scf.UKS(mol)
    mf.xc = "pbe"
    mf = mf.density_fit().run()
    wf = pyqmc.PySCFSlaterUHF(mol, mf)

    #####################################
    ## evaluate KE in PySCF
    #####################################
    ke_mat = mol.pbc_intor("int1e_kin", hermi=1, kpts=np.array([0, 0, 0]))
    dm = mf.make_rdm1()
    pyscfke = np.einsum("ij,ji", ke_mat, dm[0])
    print("PySCF kinetic energy: {0}".format(pyscfke))

    #####################################
    ## evaluate KE integral on grid
    #####################################
    X = np.linspace(0, 1, 20, endpoint=False)
    XYZ = np.meshgrid(X, X, X, indexing="ij")
    pts = [np.outer(p.ravel(), mol.a[i]) for i, p in enumerate(XYZ)]
    coords = np.sum(pts, axis=0).reshape((-1, 1, 3))

    phase, logdet = wf.recompute(coords)
    psi = phase * np.exp(logdet)
    lap = wf.laplacian(0, coords.reshape((-1, 3)))
    gridke = np.sum(-0.5 * lap * psi ** 2) / np.sum(psi ** 2)
    print("grid kinetic energy: {0}".format(gridke))

    #####################################
    ## evaluate KE integral with VMC
    #####################################
    coords = pyqmc.initial_guess(mol, 600, 0.7)
    coords = PeriodicConfigs(coords, mol.a)
    warmup = 10
    df, coords = pyqmc.vmc(
        wf,
        coords,
        nsteps=128 + warmup,
        tstep=L * 0.6,
        accumulators={"energy": pyqmc.accumulators.EnergyAccumulator(mol)},
    )
    df = pd.DataFrame(df)
    reblocked = pyqmc.reblock.optimally_reblocked(df["energyke"][warmup:])
    print(
        "VMC kinetic energy: {0} $\pm$ {1}".format(
            reblocked["mean"], reblocked["standard error"]
        )
    )
示例#11
0
 def setup(self):
     self.mol = pyscf.gto.M(atom="O 0 0 0; H 0 -2.757 2.587; H 0 2.757 2.587", basis=f'ccecpccpvdz', ecp='ccecp')
     self.mf = pyscf.scf.RHF(self.mol).run()
     self.configs = pyqmc.initial_guess(self.mol, 500)
     self.slater, self.slater_to_opt =  pyqmc.default_slater(self.mol, self.mf, optimize_orbitals=True)
     self.jastrow, self.jastrow_to_opt =  pyqmc.default_jastrow(self.mol)
     self.pgrad_acc = pyqmc.gradient_generator(self.mol, self.slater, self.slater_to_opt)
     self.slater.recompute(self.configs)
     self.jastrow.recompute(self.configs)
示例#12
0
def runtest(mol, mf, kind=0, do_mc=False):
    if do_mc:
        from pyscf import mcscf

        mc = mcscf.CASCI(mf, ncas=4, nelecas=(1, 1))
        mc.kernel()
        wf = pyqmc.default_msj(mol, mf, mc)[0]
        kpt = mf.kpt
        dm = mc.make_rdm1()
        if len(dm.shape) == 4:
            dm = np.sum(dm, axis=0)
    else:
        kpt = mf.kpts[kind]
        wf = pyqmc.Slater(mol, mf)
        dm = mf.make_rdm1()
        print("original dm shape", dm.shape)
        if len(dm.shape) == 4:
            dm = np.sum(dm, axis=0)
        dm = dm[kind]

    #####################################
    ## evaluate KE in PySCF
    #####################################
    ke_mat = mol.pbc_intor("int1e_kin", hermi=1, kpts=np.array(kpt))
    print("ke_mat", ke_mat.shape)
    print("dm", dm.shape)
    pyscfke = np.real(np.einsum("ij,ji->", ke_mat, dm))
    print("PySCF kinetic energy: {0}".format(pyscfke))

    #####################################
    ## evaluate KE integral with VMC
    #####################################
    coords = pyqmc.initial_guess(mol, 1200, 0.7)
    warmup = 10
    start = time.time()
    df, coords = pyqmc.vmc(
        wf,
        coords,
        nsteps=100 + warmup,
        tstep=1,
        accumulators={"energy": pyqmc.accumulators.EnergyAccumulator(mol)},
        verbose=False,
        hdf_file=str(uuid.uuid4()),
    )
    print("VMC time", time.time() - start)
    df = pd.DataFrame(df)
    dfke = reblock(df["energyke"][warmup:], 10)
    dfke /= mol.scale
    vmcke, err = dfke.mean(), dfke.sem()
    print("VMC kinetic energy: {0} +- {1}".format(vmcke, err))

    assert (
        np.abs(vmcke - pyscfke) < 5 * err
    ), "energy diff not within 5 sigma ({0:.6f}): energies \n{1} \n{2}".format(
        5 * err, vmcke, pyscfke)
示例#13
0
def generate_test_inputs():
    import pyqmc
    from pyqmc.coord import PeriodicConfigs
    from pyscf.pbc import gto, scf
    from pyscf.pbc.dft.multigrid import multigrid
    from pyscf.pbc import tools
    from pyscf import lib

    from_chkfile = True

    if from_chkfile:

        def loadchkfile(chkfile):
            cell = gto.cell.loads(lib.chkfile.load(chkfile, "mol"))
            kpts = cell.make_kpts([1, 1, 1])
            mf = scf.KRKS(cell, kpts)
            mf.__dict__.update(lib.chkfile.load(chkfile, "scf"))
            return cell, mf

        cell1, mf1 = loadchkfile("mf1.chkfile")
        cell2, mf2 = loadchkfile("mf2.chkfile")
    else:
        L = 4
        cell2 = gto.M(
            atom="""H     {0}      {0}      {0}                
                      H     {1}      {1}      {1}""".format(0.0, L * 0.25),
            basis="sto-3g",
            a=np.eye(3) * L,
            spin=0,
            unit="bohr",
        )

        print("Primitive cell")
        kpts = cell2.make_kpts((2, 2, 2))
        mf2 = scf.KRKS(cell2, kpts)
        mf2.xc = "pbe"
        mf2.chkfile = "mf2.chkfile"
        mf2 = mf2.run()

        print("Supercell")
        cell1 = tools.super_cell(cell2, [2, 2, 2])
        kpts = [[0, 0, 0]]
        mf1 = scf.KRKS(cell1, kpts)
        mf1.xc = "pbe"
        mf1.chkfile = "mf1.chkfile"
        mf1 = mf1.run()

    # wf1 = pyqmc.PySCFSlaterUHF(cell1, mf1)
    wf1 = PySCFSlaterPBC(cell1, mf1, supercell=1 * np.eye(3))
    wf2 = PySCFSlaterPBC(cell2, mf2, supercell=2 * np.eye(3))

    configs = pyqmc.initial_guess(cell1, 10, 0.1)

    return wf1, wf2, configs
示例#14
0
def test_wfs():
    """
    Ensure that the wave function objects are consistent in several situations.
    """

    from pyscf import lib, gto, scf
    from pyqmc.slater import PySCFSlater
    from pyqmc.jastrowspin import JastrowSpin
    from pyqmc.multiplywf import MultiplyWF
    from pyqmc.manybody_jastrow import J3
    import pyqmc

    mol = gto.M(atom="Li 0. 0. 0.; H 0. 0. 1.5", basis="sto-3g", unit="bohr")
    mf = scf.RHF(mol).run()
    mf_rohf = scf.ROHF(mol).run()
    mf_uhf = scf.UHF(mol).run()
    epsilon = 1e-5
    nconf = 10
    epos = pyqmc.initial_guess(mol, nconf)
    for wf in [
            JastrowSpin(mol),
            J3(mol),
            MultiplyWF(PySCFSlater(mol, mf), JastrowSpin(mol)),
            MultiplyWF(PySCFSlater(mol, mf), JastrowSpin(mol), J3(mol)),
            PySCFSlater(mol, mf_uhf),
            PySCFSlater(mol, mf),
            PySCFSlater(mol, mf_rohf),
    ]:
        for k in wf.parameters:
            if k != "mo_coeff":
                wf.parameters[k] = np.random.rand(*wf.parameters[k].shape)
        for k, item in testwf.test_updateinternals(wf, epos).items():
            print(k, item)
            assert item < epsilon

        testwf.test_mask(wf, 0, epos)

        _, epos = pyqmc.vmc(wf, epos, nblocks=1, nsteps=2,
                            tstep=1)  # move off node

        for fname, func in zip(
            ["gradient", "laplacian", "pgradient"],
            [
                testwf.test_wf_gradient,
                testwf.test_wf_laplacian,
                testwf.test_wf_pgradient,
            ],
        ):
            err = []
            for delta in [1e-4, 1e-5, 1e-6, 1e-7, 1e-8]:
                err.append(func(wf, epos, delta)[0])
            print(type(wf), fname, min(err))
            assert min(err) < epsilon, "epsilon {0}".format(epsilon)
示例#15
0
def VMC(
    dft_checkfile,
    output,
    nconfig=1000,
    ci_checkfile=None,
    start_from=None,
    S=None,
    client=None,
    npartitions=None,
    jastrow_kws=None,
    slater_kws=None,
    vmc_kws=None,
    accumulators=None,
):
    if vmc_kws is None:
        vmc_kws = {}

    target_root = 0
    if ci_checkfile is None:
        mol, mf = pyqmc.recover_pyscf(dft_checkfile)
        mc = None
    else:
        mol, mf, mc = pyqmc.recover_pyscf(dft_checkfile,
                                          ci_checkfile=ci_checkfile)
        mc.ci = mc.ci[target_root]

    if S is not None:
        print("S", S)
        mol = pyqmc.get_supercell(mol, np.asarray(S))

    if accumulators is None:
        accumulators = {}

    wf, _ = pyqmc.generate_wf(mol,
                              mf,
                              mc=mc,
                              jastrow_kws=jastrow_kws,
                              slater_kws=slater_kws)

    if start_from is not None:
        pyqmc.read_wf(wf, start_from)

    configs = pyqmc.initial_guess(mol, nconfig)

    pyqmc.vmc(wf,
              configs,
              accumulators=generate_accumulators(mol, mf, **accumulators),
              verbose=True,
              hdf_file=output,
              client=client,
              npartitions=npartitions,
              **vmc_kws)
示例#16
0
def info_functions(mol, wf, accumulators):
    accumulators["energy"] = accumulators["pgrad"].enacc
    configs = pyqmc.initial_guess(mol, 100)
    wf.recompute(configs)
    for k, acc in accumulators.items():
        shapes = acc.shapes()
        keys = acc.keys()
        assert shapes.keys() == keys, "keys: {0}\nshapes: {1}".format(
            keys, shapes)
        avg = acc.avg(configs, wf)
        assert avg.keys() == keys, (k, avg.keys(), keys)
        for ka in keys:
            assert shapes[ka] == avg[ka].shape, "{0} {1}".format(
                ka, avg[ka].shape)
示例#17
0
def evaluate_big1rdm(mc_calc, output, nconfig =1000, **kwargs):
    mol = mc_calc['mol']
    a = pyscf.lo.orth_ao(mol, 'lowdin')
    obdm_up = pyqmc.obdm.OBDMAccumulator(mol=mol, orb_coeff=a, spin=0)
    obdm_down = pyqmc.obdm.OBDMAccumulator(mol=mol, orb_coeff=a, spin=1)

    configs = pyqmc.initial_guess(mol, 1000)
    pyqmc.vmc(mc_calc['wf'], configs, hdf_file=output,
                accumulators = {
                    'obdm_up':obdm_up,
                    'obdm_down':obdm_down
                },
                **kwargs
    )
示例#18
0
def test_pbc_wfs():
    """
    Ensure that the wave function objects are consistent in several situations.
    """

    from pyscf.pbc import lib, gto, scf
    from pyqmc.slaterpbc import PySCFSlaterPBC, get_supercell
    from pyqmc.jastrowspin import JastrowSpin
    from pyqmc.multiplywf import MultiplyWF
    from pyqmc.coord import OpenConfigs
    import pyqmc

    mol = gto.M(atom="H 0. 0. 0.; H 1. 1. 1.",
                basis="sto-3g",
                unit="bohr",
                a=np.eye(3) * 4)
    mf = scf.KRKS(mol).run()
    # mf_rohf = scf.KROKS(mol).run()
    # mf_uhf = scf.KUKS(mol).run()
    epsilon = 1e-5
    nconf = 10
    supercell = get_supercell(mol, S=np.eye(3))
    epos = pyqmc.initial_guess(supercell, nconf)
    for wf in [
            MultiplyWF(PySCFSlaterPBC(supercell, mf), JastrowSpin(mol)),
            PySCFSlaterPBC(supercell, mf),
            # PySCFSlaterPBC(supercell, mf_uhf),
            # PySCFSlaterPBC(supercell, mf_rohf),
    ]:
        for k in wf.parameters:
            if k != "mo_coeff":
                wf.parameters[k] = np.random.rand(*wf.parameters[k].shape)
        for fname, func in zip(
            ["gradient", "laplacian", "pgradient"],
            [
                testwf.test_wf_gradient,
                testwf.test_wf_laplacian,
                testwf.test_wf_pgradient,
            ],
        ):
            err = []
            for delta in [1e-4, 1e-5, 1e-6, 1e-7, 1e-8]:
                err.append(func(wf, epos, delta)[0])
            print(fname, min(err))
            assert min(err) < epsilon

        for k, item in testwf.test_updateinternals(wf, epos).items():
            print(k, item)
            assert item < epsilon
示例#19
0
def evaluate_smallbasis(mc_calc, smallbasis_hdf, nconfig=1000, **kwargs):
    with h5py.File(smallbasis_hdf,'r') as f:
        basis_up = f['basis_up'][...]
        basis_down = f['basis_down'][...]
    mol = mc_calc['mol']
    obdm_up_acc = pyqmc.obdm.OBDMAccumulator(mol=mol, orb_coeff=basis_up, spin=0)
    obdm_down_acc = pyqmc.obdm.OBDMAccumulator(mol=mol, orb_coeff=basis_down, spin=1)
    tbdm = pyqmc.tbdm.TBDMAccumulator(mol, np.array([basis_up,basis_down]), spin=(0,1))
    acc = {'energy': pyqmc.EnergyAccumulator(mol),
        'obdm_up':obdm_up_acc,
        'obdm_down':obdm_down_acc,
        'tbdm': tbdm } 

    configs = pyqmc.initial_guess(mc_calc['mol'], nconfig)
    pyqmc.vmc(mc_calc['wf'], configs, accumulators = acc, **kwargs)
示例#20
0
def test():
    """ Optimize a Helium atom's wave function and check that it's 
    better than Hartree-Fock"""

    mol = gto.M(atom="He 0. 0. 0.", basis="bfd_vdz", ecp="bfd", unit="bohr")
    mf = scf.RHF(mol).run()
    wf = slater_jastrow(mol, mf)
    nconf = 500
    wf, dfgrad, dfline = line_minimization(wf, initial_guess(mol, nconf),
                                           gradient_generator(mol, wf))
    dfgrad = pd.DataFrame(dfgrad)
    mfen = mf.energy_tot()
    enfinal = dfgrad["en"].values[-1]
    enfinal_err = dfgrad["en_err"].values[-1]
    assert mfen > enfinal
示例#21
0
def genconfigs(n):
    """
  Generate configurations and weights corresponding
  to the highest determinant in MD expansion
  """

    import os
    os.system('mkdir -p vmc/')

    mol, mf, mc, wf, to_opt, freeze = wavefunction(return_mf=True)
    #Sample from the wave function which we're taking pderiv relative to
    mf.mo_coeff = mc.mo_coeff
    mf.mo_occ *= 0
    mf.mo_occ[wf.wf1._det_occup[0][-1]] = 2
    wfp = PySCFSlaterUHF(mol, mf)

    #Lots of configurations
    coords = pyqmc.initial_guess(mol, 100000)

    eacc = EnergyAccumulator(mol)
    transform = LinearTransform(wf.parameters, to_opt, freeze)
    pgrad_bare = PGradTransform(eacc, transform, 0)

    #Lots of steps
    warmup = 10
    for i in range(n + warmup + 1):
        df, coords = vmc(wfp, coords, nsteps=1)

        print(i)
        if (i > warmup):
            coords.configs.dump('vmc/coords' + str(i - warmup) + '.pickle')

            val = wf.recompute(coords)
            valp = wfp.value()

            d = pgrad_bare(coords, wf)

            data = {
                'dpH': np.array(d['dpH'])[:, -1],
                'dppsi': np.array(d['dppsi'])[:, -1],
                'en': np.array(d['total']),
                "wfval": val[1],
                "wfpval": valp[1]
            }
            pd.DataFrame(data).to_json('vmc/evals' + str(i - warmup) + '.json')
    return -1
示例#22
0
def test_wfs():
    """
    Ensure that the wave function objects are consistent in several situations.
    """

    from pyscf import lib, gto, scf
    from pyqmc.slateruhf import PySCFSlaterUHF
    from pyqmc.jastrowspin import JastrowSpin
    from pyqmc.multiplywf import MultiplyWF
    from pyqmc.coord import OpenConfigs
    import pyqmc

    mol = gto.M(atom="Li 0. 0. 0.; H 0. 0. 1.5", basis="cc-pvtz", unit="bohr")
    mf = scf.RHF(mol).run()
    mf_rohf = scf.ROHF(mol).run()
    mf_uhf = scf.UHF(mol).run()
    epsilon = 1e-5
    nconf = 10
    epos = pyqmc.initial_guess(mol, nconf)
    for wf in [
            JastrowSpin(mol),
            MultiplyWF(PySCFSlaterUHF(mol, mf), JastrowSpin(mol)),
            PySCFSlaterUHF(mol, mf_uhf),
            PySCFSlaterUHF(mol, mf),
            PySCFSlaterUHF(mol, mf_rohf),
    ]:
        for k in wf.parameters:
            if k != "mo_coeff":
                wf.parameters[k] = np.random.rand(*wf.parameters[k].shape)
        for fname, func in zip(
            ["gradient", "laplacian", "pgradient"],
            [
                testwf.test_wf_gradient,
                testwf.test_wf_laplacian,
                testwf.test_wf_pgradient,
            ],
        ):
            err = []
            for delta in [1e-4, 1e-5, 1e-6, 1e-7, 1e-8]:
                err.append(func(wf, epos, delta)[0])
            print(fname, min(err))
            assert min(err) < epsilon

        for k, item in testwf.test_updateinternals(wf, epos).items():
            print(k, item)
            assert item < epsilon
示例#23
0
def test():
    print("running scf", flush=True)
    mol = gto.M(atom="H 0. 0. 0.; H 0. 0. 1.6", basis="ccpvdz", unit="bohr")
    mf = scf.UHF(mol).run()
    mf.stdout = None

    print("setting up wfs", flush=True)
    wf0 = pyqmc.Slater(mol, mf)
    mf.mo_coeff[0][:, 0] = np.mean(mf.mo_coeff[0][:, :2], axis=1)
    wf1, to_opt = pyqmc.default_slater(mol, mf, optimize_orbitals=True)

    pgrad = pyqmc.gradient_generator(mol, wf1, to_opt)
    configs = pyqmc.initial_guess(mol, 2000)

    wf0.recompute(configs)
    wf1.recompute(configs)
    wfs = [wf0, wf1]

    print("warming up", flush=True)
    block_avg, configs = oo.sample_overlap_worker(wfs,
                                                  configs,
                                                  pgrad,
                                                  20,
                                                  tstep=1.5)

    print("computing gradients and normalization", flush=True)
    data = get_data(wfs, configs, pgrad)
    parameters = pgrad.transform.serialize_parameters(wfs[-1].parameters)
    N = compute_normalization(wfs, [parameters], pgrad.transform, configs)
    print(np.stack([data["N"], N]))

    print("computing numerical gradients", flush=True)
    error = {"N": [], "S": []}
    deltas = [1e-4, 1e-5, 1e-6]
    numgrad = numerical_gradient(wfs, configs, pgrad, deltas)
    for k, ng in numgrad.items():
        pgerr = data[k + "_derivative"].T[:, np.newaxis] - ng
        error[k] = pgerr

    print("computing errors", flush=True)
    for k, er in error.items():
        error[k] = np.amin(er, axis=1)
        print(k)
        print(error[k])
示例#24
0
 def optimize(self, nconfig=1000, **kwargs):
     configs = pyqmc.initial_guess(self.mol, nconfig)
     acc = pyqmc.gradient_generator(self.mol, self.wf, to_opt=self.to_opt)
     if self.client is None:
         pyqmc.line_minimization(self.wf, configs, acc, **kwargs)
     else:
         pyqmc.dasktools.line_minimization(
             self.wf,
             configs,
             acc,
             **kwargs,
             client=self.client,
             lmoptions={"npartitions": self.npartitions},
             vmcoptions={
                 "npartitions": self.npartitions,
                 'nblocks': 5,
                 'nsteps_per_block': 20
             },
         )
示例#25
0
    def setup(self):

        self.cell = pyscf.pbc.gto.Cell()
        self.cell.atom = '''C     0.      0.      0.    
              C     0.8917  0.8917  0.8917
              C     1.7834  1.7834  0.    
              C     2.6751  2.6751  0.8917
              C     1.7834  0.      1.7834
              C     2.6751  0.8917  2.6751
              C     0.      1.7834  1.7834
              C     0.8917  2.6751  2.6751'''
        self.cell.basis = f'ccecpccpvdz'
        self.cell.pseudo = 'ccecp'
        self.cell.a = np.eye(3)*3.5668
        self.cell.exp_to_discard=0.2
        self.cell.build()

        self.configs = pyqmc.initial_guess(self.cell, 500)
        self.jastrow, self.jastrow_to_opt =  pyqmc.default_jastrow(self.cell)
        self.jastrow.recompute(self.configs)
示例#26
0
def sweepelectron():
  """
  Sweep an electron across the molecule
  to find a guess for the nodal position
  """
  import copy 
  from pyqmc.accumulators import EnergyAccumulator, LinearTransform, PGradTransform
  
  #Generate wave function and bare parameter gradient objects
  mol, wf, to_opt, freeze = wavefunction() 
  eacc = EnergyAccumulator(mol)
  transform = LinearTransform(wf.parameters, to_opt, freeze)
  pgrad = PGradTransform(eacc, transform, 1e-20)

  #Initial coords
  configs = pyqmc.initial_guess(mol, 1).configs[:,:,:]

  #Sweep electron 0
  full_df = None
  e = 3 #electron
  dim = 1 #Coordinate to vary
  
  for i in np.linspace(0, 20, 200):
    new_configs = copy.deepcopy(configs)
    new_configs[:,e,dim] += i
    shifted_configs = OpenConfigs(new_configs)
    wfval = wf.recompute(shifted_configs)
    d = pgrad(shifted_configs, wf)
    small_df = pd.DataFrame({
      'ke':[d['ke'][0]],
      'total':[d['total'][0]],
      'dppsi':[d['dppsi'][0][0]],
      'dpH'  :[d['dpH'][0][0]],
      'wfval':[wfval[0][0]*np.exp(wfval[1][0])],
      'ycoord': i,
      'configs':[copy.deepcopy(new_configs)],
    })
    if(full_df is None): full_df = small_df
    else: full_df = pd.concat((full_df, small_df), axis=0)
  
  return full_df.reset_index()
示例#27
0
def test():
    chkfile = "h2.hdf5"
    optfile = "linemin.hdf5"
    run_scf(chkfile)
    mol, mf = pyqmc.recover_pyscf(chkfile)
    noise = (np.random.random(mf.mo_coeff.shape) - 0.5) * 0.2
    mf.mo_coeff = mf.mo_coeff * 1j + noise

    slater_kws = {"optimize_orbitals": True}
    wf, to_opt = pyqmc.generate_wf(mol, mf, slater_kws=slater_kws)

    configs = pyqmc.initial_guess(mol, 100)
    acc = pyqmc.gradient_generator(mol, wf, to_opt)
    pyqmc.line_minimization(wf,
                            configs,
                            acc,
                            verbose=True,
                            hdf_file=optfile,
                            max_iterations=5)

    assert os.path.isfile(optfile)
    os.remove(chkfile)
    os.remove(optfile)
示例#28
0
def runtest(mol, mf, kind):
    kpt = mf.kpts[kind]
    wf = pyqmc.PySCFSlaterUHF(mol, mf, twist=np.dot(kpt, mol.a.T / np.pi))

    #####################################
    ## evaluate KE in PySCF
    #####################################
    ke_mat = mol.pbc_intor('int1e_kin', hermi=1, kpts=np.array(kpt))
    dm = mf.make_rdm1()
    if len(dm.shape) == 4:
        dm = np.sum(dm, axis=0)
    pyscfke = np.real(np.einsum('ij,ji->', ke_mat, dm[kind]))
    print('PySCF kinetic energy: {0}'.format(pyscfke))

    #####################################
    ## evaluate KE integral with VMC
    #####################################
    coords = pyqmc.initial_guess(mol, 1200, .7)
    warmup = 10
    start = time.time()
    df, coords = pyqmc.vmc(
        wf,
        coords,
        nsteps=32 + warmup,
        tstep=1,
        accumulators={"energy": pyqmc.accumulators.EnergyAccumulator(mol)},
        verbose=False,
    )
    print("VMC time", time.time() - start)
    df = pd.DataFrame(df)
    dfke = reblock(df["energyke"][warmup:], 8)
    vmcke, err = dfke.mean(), dfke.sem()
    print('VMC kinetic energy: {0} +- {1}'.format(vmcke, err))

    assert np.abs(vmcke-pyscfke) < 5 * err, \
        "energy diff not within 5 sigma ({0:.6f}): energies \n{1} \n{2}".format(5 * err, vmcke, pyscfke)
示例#29
0
def test_shci_wf():
    mol = pyscf.gto.M(
        atom="O 0. 0. 0.; H 0. 0. 2.0",
        basis="ccecpccpvtz",
        ecp="ccecp",
        unit="bohr",
        charge=-1,
    )
    mf = pyscf.scf.RHF(mol)
    mf.kernel()
    e_hf = mf.energy_tot()
    cisolver = pyscf.hci.SCI(mol)
    cisolver.select_cutoff = 0.1
    nmo = mf.mo_coeff.shape[1]
    nelec = mol.nelec
    h1 = mf.mo_coeff.T.dot(mf.get_hcore()).dot(mf.mo_coeff)
    h2 = pyscf.ao2mo.full(mol, mf.mo_coeff)
    e, civec = cisolver.kernel(h1, h2, nmo, nelec, verbose=4)
    cisolver.ci = civec[0]
    ci_energy = mf.energy_nuc() + e

    tol = 0.0
    configs = pyqmc.initial_guess(mol, 1000)
    wf = pyqmc.Slater(mol, mf, cisolver, tol=tol)
    data, configs = pyqmc.vmc(
        wf,
        configs,
        nblocks=40,
        verbose=True,
        accumulators={"energy": pyqmc.EnergyAccumulator(mol)},
    )
    en, err = avg(data["energytotal"][1:])
    nsigma = 4
    assert len(wf.parameters["det_coeff"]) == len(cisolver.ci)
    assert en - nsigma * err < e_hf
    assert en + nsigma * err > ci_energy
示例#30
0
    import pyqmc
    import pyqmc.dasktools
    from pyqmc.dasktools import distvmc as vmc
    from pyqmc.dasktools import line_minimization
    from pyqmc.cvmc import optimize
    from dask.distributed import Client, LocalCluster
    r = 1.1

    ncore = 2
    sys = setuph2(r)
    cluster = LocalCluster(n_workers=ncore, threads_per_worker=1)
    client = Client(cluster)

    # Set up calculation
    nconf = 800
    configs = pyqmc.initial_guess(sys["mol"], nconf)

    wf, dfgrad, dfline = line_minimization(
        sys["wf"],
        configs,
        pyqmc.gradient_generator(sys["mol"], sys["wf"]),
        client=client,
        maxiters=5,
    )

    forcing = {}
    obj = {}
    for k in sys["descriptors"]:
        forcing[k] = 0.0
        obj[k] = 0.0