示例#1
0
 def test_unzip_and_convert_metadata(self):
     file_zip = os.path.join(TestAsvJsonText.data, 'results2.zip')
     temp = get_temp_folder(__file__, 'temp_unzip_and_convert_metadata')
     create_asv_benchmark(location=temp,
                          models={'LogisticRegression', 'LinearRegression'})
     unzip_files(file_zip, temp)
     data = os.path.join(temp, 'results')
     conf = os.path.join(temp, 'asv.conf.json')
     exp = export_asv_json(data, baseline="skl", conf=conf)
     par_problem = []
     par_scenario = []
     for row in exp:
         if 'par_problem' in row:
             par_problem.append(row['par_problem'])
         if 'par_scenario' in row:
             par_scenario.append(row['par_scenario'])
     s = set(par_scenario)
     self.assertEqual(s, {'default', 'liblinear'})
     s = set(par_problem)
     self.assertEqual(s, {
         'm-cl', '~m-reg-64', 'b-cl', 'm-reg', 'b-reg', '~b-cl-64',
         '~b-reg-64'
     })
     out = os.path.join(temp, "df.xlsx")
     df = pandas.DataFrame(exp)
     df.to_excel(out)
示例#2
0
    def test_cli_asv2csv(self):
        temp = get_temp_folder(__file__, "temp_asv2csv")
        file_zip = os.path.join(TestCliAsvBench.data, 'results.zip')
        unzip_files(file_zip, temp)
        data = os.path.join(temp, 'results')

        out = os.path.join(temp, "data.csv")
        st = BufferedPrint()
        main(args=["asv2csv", "-f", data, "-o", out], fLOG=st.fprint)
        self.assertExists(out)
        df = pandas.read_csv(out)
        self.assertEqual(df.shape, (168, 66))
        out = os.path.join(temp, "data<date>.csv")
        main(args=["asv2csv", "-f", data, "-o", out], fLOG=st.fprint)
示例#3
0
 def test_unzip_and_convert(self):
     file_zip = os.path.join(TestAsvJsonText.data, 'results.zip')
     temp = get_temp_folder(__file__, 'temp_unzip_and_convert')
     unzip_files(file_zip, temp)
     data = os.path.join(temp, 'results')
     exp = export_asv_json(data, baseline="skl")
     self.assertIsInstance(exp, list)
     self.assertTrue(all(map(lambda x: isinstance(x, dict), exp)))
     cc = 0
     for e in exp:
         ms = [k for k in e if k.startswith("M-")]
         rs = [k for k in e if k.startswith("R-")]
         if len(ms) > 0 and len(rs) > 0:
             cc += 1
     if cc == 0:
         raise AssertionError("No rs")
 def test_process_data(self):
     fLOG(
         __file__,
         self._testMethodName,
         OutputPrint=__name__ == "__main__")
     if is_travis_or_appveyor():
         warnings.warn("disabled on appveyor and travis")
         return
     temp = get_temp_folder(__file__, "temp_process_data_cresus_2016")
     import keyring
     pwd = keyring.get_password(
         "cresus", os.environ["COMPUTERNAME"] + "ensae")
     assert pwd
     name = cresus_dummy_file()
     if not os.path.exists(name):
         raise FileNotFoundError(name)
     zipname = os.path.join(temp, "bdd.zip")
     pwd = pwd.encode("ascii")
     decrypt_stream(pwd, name, zipname)
     res = unzip_files(zipname, temp)
     fLOG(res)
     infile = res[0]
     train, test = process_cresus_whole_process(
         infile, outfold=temp, fLOG=fLOG)
     for r in train.values():
         df = pandas.read_csv(r, sep="\t", encoding="utf-8")
         fLOG(df.columns)