示例#1
0
def available_quantum_device():
    # Returns first available quantum device
    devices_dict = get_devices(as_dict=True)
    print('devices_dict: ', devices_dict)

    for device in devices_dict.values():
        if (device.is_online()):
            return device

    # If we got here, there weren't any devices online
    return None
def with_error(n, s, runs):
    acorn = get_devices(
        as_dict=True)['19Q-Acorn']  # simulate noise with 19Q-Acorn
    qvm = QVMConnection(acorn, use_queue=True)  # put in queue in case too long
    p = grover(n, s)  # stores grover program
    job_id = qvm.run_async(p, list(range(n)), trials=runs)  # stores result
    job = qvm.get_job(job_id)  # stores job
    while not job.is_done():  # while the job isn't finished
        time.sleep(.1)  # wait .1 seconds
        job = qvm.get_job(job_id)  # update job status
    result = job.result()  # store job result
    print(accuracy(result, s))  # prints accuracy rate
示例#3
0
def test_qpu_run(forest: ForestConnection):
    devices = get_devices(async_endpoint=forest.async_endpoint, api_key=forest.api_key,
                          user_id=forest.user_id, as_dict=True)

    for name, dev in devices.items():
        if not dev.is_online:
            continue

        # TODO: gh-372. No way to query whether a device is available for running
        pytest.xfail("Please fix after gh-372")
        qpu = QPU(connection=forest, device_name=name)
        bitstrings = qpu.run(
            quil_program=Program(X(0), MEASURE(0, 0)),
            classical_addresses=[0],
            trials=1000,
        )
        assert bitstrings.shape == (1000, 1)
        assert np.mean(bitstrings) > 0.8
示例#4
0
def compiletoquil(myprogram):
    devices = get_devices(as_dict=True)
    agave = devices['8Q-Agave']
    compiler = CompilerConnection(agave)

    print('\n# Original pyQuil program,\n\n', myprogram)

    job_id = compiler.compile_async(myprogram)
    job = compiler.wait_for_job(job_id)

    print('\n# Compiled quil code,\n\n', job.compiled_quil())
    print('# gate volume', job.gate_volume())
    print('# gate depth', job.gate_depth())
    print('# topological swaps', job.topological_swaps())
    print('# program fidelity', job.program_fidelity())
    print('# multiqubit gate depth', job.multiqubit_gate_depth())
    print('\n# End of compiling info\n')

    return  #myprogram, job.compiled_quil()
示例#5
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# ===========================================
# wavelet.py
#
# Doing the wavelet transform in PyQuil.
#
# written by Ryan LaRose <*****@*****.**>
# at Michigan State University 05-17-18
# ===========================================

from pyquil.quil import Program
import pyquil.gates as gates
from pyquil import api

devices = api.get_devices(as_dict=True)
acorn = devices['8Q-Agave']
compiler = api.CompilerConnection(acorn)

qprog = Program()
qprog.inst(gates.H(0), gates.H(1), gates.H(2), gates.CNOT(0, 2),
           gates.CNOT(1, 2))

job_id = compiler.compile_async(qprog)
job = compiler.wait_for_job(job_id)

print(job.compiled_quil())

qvm = api.QVMConnection()
示例#6
0
        if (x[0] == 0 and x[1] == 0):
            sum = sum + 1
    return (float(sum) / float(seq_trials))
    print(sum)


gate_list = [gen_X, gen_Z]
qubit_list = [13]

seq_trials = 500  #how many times to test each sequence
num_of_seqs = 20  #number of sequences of a given length to try

range_of_seqs = range(0, 200)  #every 10 up to 200
interval = 5

acorn = get_devices(as_dict=True)['19Q-Acorn']

qvm = QVMConnection(acorn)

data = []
len_list = []
ave_fid = []

for length in range_of_seqs[::interval]:
    print(length)
    data = []
    for j in range(0, num_of_seqs):
        data.append(Fidelity(length, seq_trials, gate_list, qubit_list, qvm))
    len_list.append(length)
    print(sum(data) / float(len(data)))
    ave_fid.append(sum(data) / float(len(data)))
示例#7
0
"""
Spyder Editor

This is a temporary script file.
"""

import pyquil.quil as pq
from pyquil.quil import Program
from pyquil import api
from pyquil.gates import *
from pyquil.api import CompilerConnection, get_devices
from pyquil.quil import Pragma
from qutip import *
import numpy as np

devices = get_devices(as_dict=True)
acorn = devices['19Q-Acorn']
compiler = CompilerConnection(acorn)

qvm = api.QVMConnection()
qpu = api.QPUConnection('19Q-Acorn')

qubits = [[10, 16, 11, 17, 12], [4, 9, 14, 19, 13]]


def postselect_had(data):
    newdata = []
    for item in data:
        if (item[0] + item[2] + item[3]) % 2 == 0 and (item[1] +
                                                       item[2]) % 2 == 0:
            newdata.append([item[-1]])
示例#8
0
from pyquil.api import CompilerConnection, get_devices
from pyquil.gates import X, H, CNOT, MEASURE
from pyquil.quil import Program

program = Program(
    # put your program here...
    X(0), )

agave = get_devices(as_dict=True)['8Q-Agave']
compiler = CompilerConnection(device=agave)
compiled = compiler.compile(program)

print(compiled)
def main():
    qvm = QVMConnection()
    agave = get_devices(as_dict=True)['8Q-Agave']
    qvm_noisy = QVMConnection(agave)
    print(
        "Timestamp, Singlet (Wavefunction), Triplet (Wavefunction), Singlet (QVM), Triplet (QVM),"
        "Singlet (Noise), Triplet (Noise), 00 (Noise), 11 (Noise),"
        "Singlet (Compiled on QVM), Triplet (Compiled on QVM), 00 (Compiled on QVM), 11 (Compiled on QVM),"
    )

    # Truncate file with compiled code
    open(FILENAME, "w").close()
    # Rotation
    for t in range(0, 50):  # ns
        p = create_singlet_state()
        add_switch_to_singlet_triplet_basis_gate_to_program(p)
        w_larmor = 0.46  # 4.6e8 1/s as determined in the experiment
        p.inst(PHASE(w_larmor * t, 0))
        p.inst(("SWITCH_TO_SINGLET_TRIPLET_BASIS", 0, 1))
        wavefunction = qvm.wavefunction(p)
        probs = wavefunction.get_outcome_probs()

        p.measure(0, 0)
        p.measure(1, 1)
        # Run on a perfect QVM (no noise)
        data = qvm.run(p, trials=1000)

        # simulate physical noise on QVM
        data_noisy = qvm_noisy.run(p, trials=1000)
        noisy_data_distr = distribution(data_noisy)

        agave = get_devices(as_dict=True)['8Q-Agave']
        compiler = CompilerConnection(agave)
        job_id = compiler.compile_async(p)
        # wait_for_job has print statement
        # using this workaround to suppress it
        import sys, os
        _old_stdout = sys.stdout
        with open(os.devnull, 'w') as fp:
            sys.stdout = fp
            job = compiler.wait_for_job(
                job_id)  # This is the only line that matters
        sys.stdout = _old_stdout

        # Run code compiled for 8Q-Agave on a noisy QVM
        # Per example on https://github.com/rigetticomputing/pyquil/blob/master/examples/run_quil.py
        p_compiled = Program(job.compiled_quil())
        with open(FILENAME, "a") as fp:
            fp.write("Timestep: %s\n" % t)
            fp.write("%s" % job.compiled_quil())
            fp.write("\n")
        data_compiled = qvm_noisy.run(p_compiled, trials=1000)
        compiled_data_distr = distribution(data_compiled)

        print("%s, %s, %s, %s, %s, %s, %s, %s ,%s, %s, %s, %s, %s" % (
            t,
            probs['01'],
            probs['10'],
            distribution(data).get((0, 1), 0),
            distribution(data).get((1, 0), 0),
            noisy_data_distr.get((0, 1), 0),
            noisy_data_distr.get((1, 0), 0),
            noisy_data_distr.get((0, 0), 0),
            noisy_data_distr.get((1, 1), 0),
            compiled_data_distr.get((0, 1), 0),
            compiled_data_distr.get((1, 0), 0),
            compiled_data_distr.get((0, 0), 0),
            compiled_data_distr.get((1, 1), 0),
        ))
#!/usr/bin/env python
# Author Dario Clavijo 2018

from pyquil.quilatom import QubitPlaceholder
from pyquil.quil import Program, address_qubits
from pyquil.api import QVMConnection
from pyquil.gates import CNOT, H, X, Z, MEASURE
from pyquil.api import get_devices, QPUConnection

for device in get_devices():
    if device.is_online():
        print('Device {} is online'.format(device.name))

# this is the secret
s = int(b'001100110011001100', 2)  # 1110

class_readouts = [17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

qregs = QubitPlaceholder().register(18)
tmp = QubitPlaceholder().register(1)

prog = Program(X(tmp[0]))

prog += Program(H(tmp[0]))
for i in range(0, len(qregs)):
    prog += Program(H(qregs[i]))

# this is the oracle, think of it as a blackbo
for i in range(0, len(qregs)):
    if s & (1 << i):
        prog += Program(CNOT(qregs[i], tmp[0]))
示例#11
0
def get_qc(name: str,
           *,
           as_qvm: bool = None,
           noisy: bool = None,
           connection: ForestConnection = None):
    """
    Get a quantum computer.

    A quantum computer is an object of type :py:class:`QuantumComputer` and can be backed
    either by a QVM simulator ("Quantum/Quil Virtual Machine") or a physical Rigetti QPU ("Quantum
    Processing Unit") made of superconducting qubits.

    You can choose the quantum computer to target through a combination of its name and optional
    flags. There are multiple ways to get the same quantum computer. The following are equivalent::

        >>> qc = get_qc("8Q-Agave-noisy-qvm")
        >>> qc = get_qc("8Q-Agave", as_qvm=True, noisy=True)

    and will construct a simulator of the 8q-agave chip with a noise model based on device
    characteristics. We also provide a means for constructing generic quantum simulators that
    are not related to a given piece of Rigetti hardware::

        >>> qc = get_qc("9q-generic-qvm")
        >>> qc = get_qc("9q-generic", as_qvm=True)

    Redundant flags are acceptable, but conflicting flags will raise an exception::

        >>> qc = get_qc("9q-generic-qvm") # qc is fully specified by its name
        >>> qc = get_qc("9q-generic-qvm", as_qvm=True) # redundant, but ok
        >>> qc = get_qc("9q-generic-qvm", as_qvm=False) # Error!

    Use :py:func:`list_quantum_computers` to retrieve a list of known qc names.

    This method is provided as a convenience to quickly construct and use QVM's and QPU's.
    Power users may wish to have more control over the specification of a quantum computer
    (e.g. custom noise models, bespoke topologies, etc.). This is possible by constructing
    a :py:class:`QuantumComputer` object by hand. Please refer to the documentation on
    :py:class:`QuantumComputer` for more information.

    :param name: The name of the desired quantum computer. This should correspond to a name
        returned by :py:func:`list_quantum_computers`. Names ending in "-qvm" will return
        a QVM. Names ending in "-noisy-qvm" will return a QVM with a noise model. Otherwise,
        we will return a QPU with the given name.
    :param as_qvm: An optional flag to force construction of a QVM (instead of a QPU). If
        specified and set to ``True``, a QVM-backed quantum computer will be returned regardless
        of the name's suffix
    :param noisy: An optional flag to force inclusion of a noise model. If
        specified and set to ``True``, a quantum computer with a noise model will be returned
        regardless of the name's suffix. The noise model for QVM's based on a real QPU
        is an empirically parameterized model based on real device noise characteristics.
        The generic QVM noise model is simple T1 and T2 noise plus readout error. See
        :py:func:`decoherance_noise_with_asymmetric_ro`.
    :param connection: An optional :py:class:ForestConnection` object. If not specified,
        the default values for URL endpoints, ping time, and status time will be used. Your
        user id and API key will be read from ~/.pyquil_config. If you deign to change any
        of these parameters, pass your own :py:class:`ForestConnection` object.
    :return:
    """
    if connection is None:
        connection = ForestConnection()

    name, as_qvm, noisy = _parse_name(name, as_qvm, noisy)

    if name == '9q-generic':
        if not as_qvm:
            raise ValueError(
                "The device '9q-generic' is only available as a QVM")

        nineq_square = nx.convert_node_labels_to_integers(
            nx.grid_2d_graph(3, 3))
        nineq_device = NxDevice(topology=nineq_square)
        if noisy:
            noise_model = decoherance_noise_with_asymmetric_ro(
                nineq_device.get_isa())
        else:
            noise_model = None

        return QuantumComputer(name='9q-generic-qvm',
                               qam=QVM(connection=connection,
                                       noise_model=noise_model),
                               device=nineq_device)

    # At least based off a real device.
    device = get_devices(as_dict=True)[name]

    if not as_qvm:
        if noisy is not None and noisy:
            warnings.warn(
                "You have specified `noisy=True`, but you're getting a QPU. This flag "
                "is meant for controling noise models on QVMs.")
        return QuantumComputer(name=name,
                               qam=QPU(device_name=name,
                                       connection=connection),
                               device=device)

    if noisy:
        noise_model = device.noise_model
        name = "{name}-noisy-qvm".format(name=name)
    else:
        noise_model = None
        name = "{name}-qvm".format(name=name)

    return QuantumComputer(name=name,
                           qam=QVM(connection=connection,
                                   noise_model=noise_model),
                           device=device)
def main():
    agave = get_devices(as_dict=True)['8Q-Agave']
    compiler = CompilerConnection(agave)
    qvm = QVMConnection()  # Perfect QVM
    qvm_noisy = QVMConnection(agave)  # Simulate Noise
    qpu = QPUConnection(agave)  # Physical QPU
    print("Timestamp,"
          "Singlet (Wavefunction), Triplet (Wavefunction), "
          "Singlet (QVM), Triplet (QVM),"
          "Singlet Mean (QVM Noise), Singlet Std (QVM Noise), "
          "Triplet Mean (QVM Noise), Triplet Std (QVM Noise),"
          "00 Mean (QVM Noise), 00 Std (QVM Noise),"
          "11 Mean (QVM Noise), 11 Std (QVM Noise),"
          "Singlet Mean (QPU), Singlet Std (QPU),"
          "Triplet Mean (QPU), Triplet Std (QPU),"
          "00 Mean (QPU), 00 Std (QPU),"
          "11 Mean (QPU), 1 Std (QPU)")
    # Rotation
    fp_raw = open("output.txt", "w")
    for t in range(0, 30):  # ns
        # for t in np.arange(0.0, 30.0, 0.1):  # ns
        p = create_singlet_state()
        add_switch_to_singlet_triplet_basis_gate_to_program(p)
        w_larmor = 0.46  # 4.6e8 1/s as determined in the experiment
        p.inst(PHASE(w_larmor * t, 0))
        p.inst(("SWITCH_TO_SINGLET_TRIPLET_BASIS", 0, 1))
        wavefunction = qvm.wavefunction(p)
        probs = wavefunction.get_outcome_probs()

        p.measure(0, 0)
        p.measure(1, 1)

        # Run the code on a perfect QVM (no noise)
        data = qvm.run(p, trials=1024)

        # simulate physical noise on QVM
        singlet_noisy = []
        triplet_noisy = []
        state11_noisy = []
        state00_noisy = []
        for i in range(0, 3):
            data_noisy = qvm_noisy.run(p, trials=1000)
            noisy_data_distr = distribution(data_noisy)
            singlet_noisy.append(noisy_data_distr[(1, 0)])
            triplet_noisy.append(noisy_data_distr[(0, 1)])
            state11_noisy.append(noisy_data_distr[(1, 1)])
            state00_noisy.append(noisy_data_distr[(0, 0)])

        # Run the code on QPU
        singlet_qpu = []
        triplet_qpu = []
        state11_qpu = []
        state00_qpu = []

        # Suppress print statements
        _old_stdout = sys.stdout
        for i in range(0, 9):
            with open(os.devnull, 'w') as fp:
                sys.stdout = fp
                data_qpu = qpu.run(p, trials=1024)
            qpu_data_distr = distribution(data_qpu)
            singlet_qpu.append(qpu_data_distr[(1, 0)])
            triplet_qpu.append(qpu_data_distr[(0, 1)])
            state11_qpu.append(qpu_data_distr[(1, 1)])
            state00_qpu.append(qpu_data_distr[(0, 0)])

        sys.stdout = _old_stdout
        # print('compiled quil', job.compiled_quil())
        # print('gate volume', job.gate_volume())
        # print('gate depth', job.gate_depth())
        # print('topological swaps', job.topological_swaps())
        # print('program fidelity', job.program_fidelity())
        # print('multiqubit gate depth', job.multiqubit_gate_depth())

        # Note the order of qubit in Rigetti
        # http://pyquil.readthedocs.io/en/latest/qvm.html#multi-qubit-basis-enumeration
        # (1, 0) is singlet, but in string notation it is reversed ('01'), because
        #
        #  "The Rigetti QVM enumerates bitstrings such that qubit 0 is the least significant bit (LSB)
        #   and therefore on the right end of a bitstring"
        #
        print("%s, Noise, Singlet, %s" % (t, singlet_noisy), file=fp_raw)
        print("%s, Noise, Triplet, %s" % (t, triplet_noisy), file=fp_raw)
        print("%s, Noise, 00, %s" % (t, state00_noisy), file=fp_raw)
        print("%s, Noise, 11, %s" % (t, state11_noisy), file=fp_raw)
        print("%s, QPU, Singlet, %s" % (t, singlet_qpu), file=fp_raw)
        print("%s, QPU, Triplet, %s" % (t, triplet_qpu), file=fp_raw)
        print("%s, QPU, 00, %s" % (t, state00_qpu), file=fp_raw)
        print("%s, QPU, 11, %s" % (t, state11_qpu), file=fp_raw)
        print(
            "%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s"
            % (
                t,
                probs['01'],
                probs['10'],
                distribution(data).get((1, 0), 0),
                distribution(data).get((0, 1), 0),
                np.mean(singlet_noisy),
                np.std(singlet_noisy),
                np.mean(triplet_noisy),
                np.std(triplet_noisy),
                np.mean(state00_noisy),
                np.std(state00_noisy),
                np.mean(state11_noisy),
                np.std(state11_noisy),
                np.mean(singlet_qpu),
                np.std(singlet_qpu),
                np.mean(triplet_qpu),
                np.std(triplet_qpu),
                np.mean(state00_qpu),
                np.std(state00_qpu),
                np.mean(state11_qpu),
                np.std(state11_qpu),
            ))