def test_reset(forest):
    device = NxDevice(nx.complete_graph(3))
    qc = QuantumComputer(name="testy!",
                         qam=QVM(connection=forest),
                         device=device,
                         compiler=DummyCompiler())
    p = Program(
        Declare(name="theta", memory_type="REAL"),
        Declare(name="ro", memory_type="BIT"),
        RX(MemoryReference("theta"), 0),
        MEASURE(0, MemoryReference("ro")),
    ).wrap_in_numshots_loop(1000)
    qc.run(executable=p, memory_map={"theta": [np.pi]})

    aref = ParameterAref(name="theta", index=0)
    assert qc.qam._variables_shim[aref] == np.pi
    assert qc.qam._executable == p
    assert qc.qam._memory_results["ro"].shape == (1000, 1)
    assert all([bit == 1 for bit in qc.qam._memory_results["ro"]])
    assert qc.qam.status == "done"

    qc.reset()

    assert qc.qam._variables_shim == {}
    assert qc.qam._executable is None
    assert qc.qam._memory_results["ro"] is None
    assert qc.qam.status == "connected"
def test_measure_bitstrings(forest):
    device = NxDevice(nx.complete_graph(2))
    qc_pyqvm = QuantumComputer(name="testy!",
                               qam=PyQVM(n_qubits=2),
                               device=device,
                               compiler=DummyCompiler())
    qc_forest = QuantumComputer(
        name="testy!",
        qam=QVM(connection=forest, gate_noise=[0.00] * 3),
        device=device,
        compiler=DummyCompiler(),
    )
    prog = Program(I(0), I(1))
    meas_qubits = [0, 1]
    sym_progs, flip_array = _symmetrization(prog, meas_qubits, symm_type=-1)
    results = _measure_bitstrings(qc_pyqvm,
                                  sym_progs,
                                  meas_qubits,
                                  num_shots=1)
    # test with pyQVM
    answer = [
        np.array([[0, 0]]),
        np.array([[0, 1]]),
        np.array([[1, 0]]),
        np.array([[1, 1]])
    ]
    assert all([np.allclose(x, y) for x, y in zip(results, answer)])
    # test with regular QVM
    results = _measure_bitstrings(qc_forest,
                                  sym_progs,
                                  meas_qubits,
                                  num_shots=1)
    assert all([np.allclose(x, y) for x, y in zip(results, answer)])
示例#3
0
def compile_rigetti(num_qubits, topology, program):
    if topology.lower() == 'ring':
        edge_list = []
        for i in range(0, num_qubits):
            edge_list.append((i, (i + 1) % num_qubits))

        topology = nx.from_edgelist(edge_list)
        device = NxDevice(topology)

        compiler = LocalQVMCompiler("http://localhost:6000", device)
        my_qc = QuantumComputer(name='my_qc',
                                qam=QVM(connection=ForestConnection()),
                                device=device,
                                compiler=compiler)
        executable = compiler.quil_to_native_quil(
            program)  #create QC compatible specification
        depth = compute_depth_rigetti(executable)
        volume = len(executable) - 3  #subtract extra directives
        print(executable)
        q2_count = two_qubit_count(executable)
        out_str = str(executable)
        out_str = out_str + ("#DEPTH: %s |VOL.: %s |2Q GATE COUNT: %s\n" %
                             (depth, volume, q2_count))
        print("DEPTH: %s |VOL.: %s |2Q GATE COUNT: %s" %
              (depth, volume, q2_count))
        print()
        print()
        return out_str
示例#4
0
def test_qc():
    from pyquil.api import ForestConnection, QuantumComputer
    from pyquil.api._compiler import _extract_attribute_dictionary_from_program
    from pyquil.api._qac import AbstractCompiler
    from pyquil.device import NxDevice
    from pyquil.gates import I

    class BasicQVMCompiler(AbstractCompiler):
        def quil_to_native_quil(self, program: Program):
            return basic_compile(program)

        def native_quil_to_executable(self, nq_program: Program):
            return PyQuilExecutableResponse(
                program=nq_program.out(),
                attributes=_extract_attribute_dictionary_from_program(
                    nq_program))

    try:
        qc = QuantumComputer(
            name='testing-qc',
            qam=QVM(connection=ForestConnection(), random_seed=52),
            device=NxDevice(nx.complete_graph(2)),
            compiler=BasicQVMCompiler(),
        )
        qc.run_and_measure(Program(I(0)), trials=1)
        return qc
    except (RequestException, TimeoutError) as e:
        return pytest.skip(
            "This test requires a running local QVM: {}".format(e))
def test_readout_symmetrization(forest):
    device = NxDevice(nx.complete_graph(3))
    noise_model = decoherence_noise_with_asymmetric_ro(
        gates=gates_in_isa(device.get_isa()))
    qc = QuantumComputer(
        name="testy!",
        qam=QVM(connection=forest, noise_model=noise_model),
        device=device,
        compiler=DummyCompiler(),
    )

    prog = Program(I(0), X(1), MEASURE(0, MemoryReference("ro", 0)),
                   MEASURE(1, MemoryReference("ro", 1)))
    prog.wrap_in_numshots_loop(1000)

    bs1 = qc.run(prog)
    avg0_us = np.mean(bs1[:, 0])
    avg1_us = 1 - np.mean(bs1[:, 1])
    diff_us = avg1_us - avg0_us
    assert diff_us > 0.03

    bs2 = qc.run_symmetrized_readout(prog, 1000)
    avg0_s = np.mean(bs2[:, 0])
    avg1_s = 1 - np.mean(bs2[:, 1])
    diff_s = avg1_s - avg0_s
    assert diff_s < 0.05
示例#6
0
def test_qvm_version(forest: ForestConnection):
    qvm = QVM(connection=forest)
    version_info = qvm.get_version_info()
    assert isinstance(version_info, dict)
    assert 'qvm-app' in version_info
    assert 'qvm-lib' in version_info

    def is_a_version_string(version_string: str):
        parts = version_string.split('.')
        try:
            map(int, parts)
        except ValueError:
            return False
        return True

    assert is_a_version_string(version_info['qvm-app'])
    assert is_a_version_string(version_info['qvm-lib'])
示例#7
0
def test_run(forest):
    device = NxDevice(nx.complete_graph(3))
    qc = QuantumComputer(name='testy!',
                         qam=QVM(connection=forest, gate_noise=[0.01] * 3),
                         device=device,
                         compiler=DummyCompiler())
    bitstrings = qc.run(
        Program(H(0), CNOT(0, 1), CNOT(1, 2), MEASURE(0, 0), MEASURE(1, 1),
                MEASURE(2, 2)).wrap_in_numshots_loop(1000))

    assert bitstrings.shape == (1000, 3)
    parity = np.sum(bitstrings, axis=1) % 3
    assert 0 < np.mean(parity) < 0.15
示例#8
0
def test_run_with_parameters(forest):
    device = NxDevice(nx.complete_graph(3))
    qc = QuantumComputer(name='testy!',
                         qam=QVM(connection=forest),
                         device=device,
                         compiler=DummyCompiler())
    bitstrings = qc.run(executable=Program(
        Declare(name='theta', memory_type='REAL'),
        Declare(name='ro', memory_type='BIT'), RX(MemoryReference('theta'), 0),
        MEASURE(0, MemoryReference('ro'))).wrap_in_numshots_loop(1000),
                        memory_map={'theta': [np.pi]})

    assert bitstrings.shape == (1000, 1)
    assert all([bit == 1 for bit in bitstrings])
示例#9
0
def test_run_with_parameters(forest):
    device = NxDevice(nx.complete_graph(3))
    qc = QuantumComputer(
        name="testy!", qam=QVM(connection=forest), device=device, compiler=DummyCompiler()
    )
    bitstrings = qc.run(
        executable=Program(
            Declare(name="theta", memory_type="REAL"),
            Declare(name="ro", memory_type="BIT"),
            RX(MemoryReference("theta"), 0),
            MEASURE(0, MemoryReference("ro")),
        ).wrap_in_numshots_loop(1000),
        memory_map={"theta": [np.pi]},
    )

    assert bitstrings.shape == (1000, 1)
    assert all([bit == 1 for bit in bitstrings])
示例#10
0
def test_qc_expectation_larger_lattice(forest):
    device = NxDevice(nx.complete_graph(4))
    qc = QuantumComputer(name='testy!',
                         qam=QVM(connection=forest),
                         device=device,
                         compiler=DummyCompiler())

    q0 = 2
    q1 = 3

    # bell state program
    p = Program()
    p += RESET()
    p += H(q0)
    p += CNOT(q0, q1)
    p.wrap_in_numshots_loop(10)

    # XX, YY, ZZ experiment
    sx = ExperimentSetting(in_state=sZ(q0) * sZ(q1),
                           out_operator=sX(q0) * sX(q1))
    sy = ExperimentSetting(in_state=sZ(q0) * sZ(q1),
                           out_operator=sY(q0) * sY(q1))
    sz = ExperimentSetting(in_state=sZ(q0) * sZ(q1),
                           out_operator=sZ(q0) * sZ(q1))

    e = TomographyExperiment(settings=[sx, sy, sz], program=p)

    results = qc.experiment(e)

    # XX expectation value for bell state |00> + |11> is 1
    assert np.isclose(results[0].expectation, 1)
    assert np.isclose(results[0].std_err, 0)
    assert results[0].total_counts == 40

    # YY expectation value for bell state |00> + |11> is -1
    assert np.isclose(results[1].expectation, -1)
    assert np.isclose(results[1].std_err, 0)
    assert results[1].total_counts == 40

    # ZZ expectation value for bell state |00> + |11> is 1
    assert np.isclose(results[2].expectation, 1)
    assert np.isclose(results[2].std_err, 0)
    assert results[2].total_counts == 40
示例#11
0
def test_run(forest):
    qc = QuantumComputer(
        name='testy!',
        qam=QVM(connection=forest, gate_noise=[0.01] * 3),
        device=NxDevice(nx.complete_graph(3)),
    )
    bitstrings = qc.run(Program(
        H(0),
        CNOT(0, 1),
        CNOT(1, 2),
        MEASURE(0, 0),
        MEASURE(1, 1),
        MEASURE(2, 2),
    ),
                        classical_addresses=[0, 1, 2],
                        trials=1000)

    assert bitstrings.shape == (1000, 3)
    parity = np.sum(bitstrings, axis=1) % 3
    assert 0 < np.mean(parity) < 0.15
示例#12
0
def test_readout_symmetrization(forest):
    device = NxDevice(nx.complete_graph(3))
    noise_model = decoherance_noise_with_asymmetric_ro(device.get_isa())
    qc = QuantumComputer(name='testy!',
                         qam=QVM(connection=forest, noise_model=noise_model),
                         device=device)

    prog = Program(I(0), X(1), MEASURE(0, 0), MEASURE(1, 1))

    bs1 = qc.run(prog, [0, 1], 1000)
    avg0_us = np.mean(bs1[:, 0])
    avg1_us = 1 - np.mean(bs1[:, 1])
    diff_us = avg1_us - avg0_us
    assert diff_us > 0.03

    bs2 = qc.run_symmetrized_readout(prog, [0, 1], 1000)
    avg0_s = np.mean(bs2[:, 0])
    avg1_s = 1 - np.mean(bs2[:, 1])
    diff_s = avg1_s - avg0_s
    assert diff_s < 0.05
示例#13
0
def test_qc_expectation_on_qvm_that_requires_executable(forest):
    # regression test for https://github.com/rigetti/forest-tutorials/issues/2
    device = NxDevice(nx.complete_graph(2))
    qc = QuantumComputer(
        name="testy!",
        qam=QVM(connection=forest, requires_executable=True),
        device=device,
        compiler=DummyCompiler(),
    )

    p = Program()
    theta = p.declare("theta", "REAL")
    p += RESET()
    p += RY(theta, 0)
    p.wrap_in_numshots_loop(10000)

    sx = ExperimentSetting(in_state=sZ(0), out_operator=sX(0))
    e = Experiment(settings=[sx], program=p)

    thetas = [-np.pi / 2, 0.0, np.pi / 2]
    results = []

    # Verify that multiple calls to qc.experiment with the same experiment backed by a QVM that
    # requires_exectutable does not raise an exception.
    for theta in thetas:
        results.append(qc.experiment(e, memory_map={"theta": [theta]}))

    assert np.isclose(results[0][0].expectation, -1.0, atol=0.01)
    assert np.isclose(results[0][0].std_err, 0)
    assert results[0][0].total_counts == 20000

    # bounds on atol and std_err here are a little loose to try and avoid test flakiness.
    assert np.isclose(results[1][0].expectation, 0.0, atol=0.1)
    assert results[1][0].std_err < 0.01
    assert results[1][0].total_counts == 20000

    assert np.isclose(results[2][0].expectation, 1.0, atol=0.01)
    assert np.isclose(results[2][0].std_err, 0)
    assert results[2][0].total_counts == 20000
示例#14
0
topology = nx.from_edgelist([
    (10, 2),
    (10, 4),
    (10, 6),
    (10, 8),
])

device = NxDevice(topology)


class MyLazyCompiler(AbstractCompiler):
    def quil_to_native_quil(self, program, *, protoquil=None):
        return program

    def native_quil_to_executable(self, nq_program):
        return nq_program


my_qc = QuantumComputer(
    name='my-qvm',
    qam=QVM(connection=ForestConnection()),
    device=device,
    compiler=MyLazyCompiler(),
)

nx.draw(my_qc.qubit_topology())
plt.title('5qcm', fontsize=18)
plt.show()

my_qc.run_and_measure(Program(X(10)), trials=5)
示例#15
0
def test_qvm_run_only_pqer(forest: ForestConnection):
    qvm = QVM(connection=forest, gate_noise=[0.01] * 3, requires_executable=True)
    p = Program(Declare("ro", "BIT"), X(0), MEASURE(0, MemoryReference("ro")))
    p.wrap_in_numshots_loop(1000)

    with pytest.raises(TypeError) as e:
        qvm.load(p)
        qvm.run()
        qvm.wait()
    assert e.match(r".*Make sure you have explicitly compiled your program.*")

    nq = PyQuilExecutableResponse(program=p.out(), attributes={"num_shots": 1000})
    qvm.load(nq)
    qvm.run()
    qvm.wait()
    bitstrings = qvm.read_memory(region_name="ro")
    assert bitstrings.shape == (1000, 1)
    assert np.mean(bitstrings) > 0.8
示例#16
0
def test_qvm_run_region_not_declared_not_measured_non_ro(forest: ForestConnection):
    qvm = QVM(connection=forest)
    p = Program(X(0))
    nq = PyQuilExecutableResponse(program=p.out(), attributes={"num_shots": 100})
    qvm.load(nq).run().wait()
    assert qvm.read_memory(region_name="reg") is None
示例#17
0
def test_qvm_run_region_not_declared_not_measured(
        client_configuration: QCSClientConfiguration):
    qvm = QVM(client_configuration=client_configuration)
    p = Program(X(0))
    result = qvm.run(p.wrap_in_numshots_loop(100))
    assert result.readout_data.get("ro") is None
示例#18
0
def test_qvm__default_client(client_configuration: QCSClientConfiguration):
    qvm = QVM(client_configuration=client_configuration)
    p = Program(Declare("ro", "BIT"), X(0), MEASURE(0, MemoryReference("ro")))
    result = qvm.run(p.wrap_in_numshots_loop(1000))
    bitstrings = result.readout_data.get("ro")
    assert bitstrings.shape == (1000, 1)
示例#19
0
def get_qc(name: str,
           *,
           as_qvm: bool = None,
           noisy: bool = None,
           connection: ForestConnection = None):
    """
    Get a quantum computer.

    A quantum computer is an object of type :py:class:`QuantumComputer` and can be backed
    either by a QVM simulator ("Quantum/Quil Virtual Machine") or a physical Rigetti QPU ("Quantum
    Processing Unit") made of superconducting qubits.

    You can choose the quantum computer to target through a combination of its name and optional
    flags. There are multiple ways to get the same quantum computer. The following are equivalent::

        >>> qc = get_qc("8Q-Agave-noisy-qvm")
        >>> qc = get_qc("8Q-Agave", as_qvm=True, noisy=True)

    and will construct a simulator of the 8q-agave chip with a noise model based on device
    characteristics. We also provide a means for constructing generic quantum simulators that
    are not related to a given piece of Rigetti hardware::

        >>> qc = get_qc("9q-generic-qvm")
        >>> qc = get_qc("9q-generic", as_qvm=True)

    Redundant flags are acceptable, but conflicting flags will raise an exception::

        >>> qc = get_qc("9q-generic-qvm") # qc is fully specified by its name
        >>> qc = get_qc("9q-generic-qvm", as_qvm=True) # redundant, but ok
        >>> qc = get_qc("9q-generic-qvm", as_qvm=False) # Error!

    Use :py:func:`list_quantum_computers` to retrieve a list of known qc names.

    This method is provided as a convenience to quickly construct and use QVM's and QPU's.
    Power users may wish to have more control over the specification of a quantum computer
    (e.g. custom noise models, bespoke topologies, etc.). This is possible by constructing
    a :py:class:`QuantumComputer` object by hand. Please refer to the documentation on
    :py:class:`QuantumComputer` for more information.

    :param name: The name of the desired quantum computer. This should correspond to a name
        returned by :py:func:`list_quantum_computers`. Names ending in "-qvm" will return
        a QVM. Names ending in "-noisy-qvm" will return a QVM with a noise model. Otherwise,
        we will return a QPU with the given name.
    :param as_qvm: An optional flag to force construction of a QVM (instead of a QPU). If
        specified and set to ``True``, a QVM-backed quantum computer will be returned regardless
        of the name's suffix
    :param noisy: An optional flag to force inclusion of a noise model. If
        specified and set to ``True``, a quantum computer with a noise model will be returned
        regardless of the name's suffix. The noise model for QVM's based on a real QPU
        is an empirically parameterized model based on real device noise characteristics.
        The generic QVM noise model is simple T1 and T2 noise plus readout error. See
        :py:func:`decoherance_noise_with_asymmetric_ro`.
    :param connection: An optional :py:class:ForestConnection` object. If not specified,
        the default values for URL endpoints, ping time, and status time will be used. Your
        user id and API key will be read from ~/.pyquil_config. If you deign to change any
        of these parameters, pass your own :py:class:`ForestConnection` object.
    :return:
    """
    if connection is None:
        connection = ForestConnection()

    name, as_qvm, noisy = _parse_name(name, as_qvm, noisy)

    if name == '9q-generic':
        if not as_qvm:
            raise ValueError(
                "The device '9q-generic' is only available as a QVM")

        nineq_square = nx.convert_node_labels_to_integers(
            nx.grid_2d_graph(3, 3))
        nineq_device = NxDevice(topology=nineq_square)
        if noisy:
            noise_model = decoherance_noise_with_asymmetric_ro(
                nineq_device.get_isa())
        else:
            noise_model = None

        return QuantumComputer(name='9q-generic-qvm',
                               qam=QVM(connection=connection,
                                       noise_model=noise_model),
                               device=nineq_device)

    # At least based off a real device.
    device = get_devices(as_dict=True)[name]

    if not as_qvm:
        if noisy is not None and noisy:
            warnings.warn(
                "You have specified `noisy=True`, but you're getting a QPU. This flag "
                "is meant for controling noise models on QVMs.")
        return QuantumComputer(name=name,
                               qam=QPU(device_name=name,
                                       connection=connection),
                               device=device)

    if noisy:
        noise_model = device.noise_model
        name = "{name}-noisy-qvm".format(name=name)
    else:
        noise_model = None
        name = "{name}-qvm".format(name=name)

    return QuantumComputer(name=name,
                           qam=QVM(connection=connection,
                                   noise_model=noise_model),
                           device=device)