示例#1
0
def test_group_experiments():
    expts = [  # cf above, I removed the inner nesting. Still grouped visually
        ExperimentSetting(sI(),
                          sX(0) * sI(1)),
        ExperimentSetting(sI(),
                          sI(0) * sX(1)),
        ExperimentSetting(sI(),
                          sZ(0) * sI(1)),
        ExperimentSetting(sI(),
                          sI(0) * sZ(1)),
    ]
    suite = TomographyExperiment(expts, Program(), qubits=[0, 1])
    grouped_suite = group_experiments(suite)
    assert len(suite) == 4
    assert len(grouped_suite) == 2
示例#2
0
def test_measure_observables(forest):
    expts = [
        ExperimentSetting(sI(), o1 * o2)
        for o1, o2 in itertools.product([sI(0), sX(0), sY(0), sZ(0)], [sI(1), sX(1), sY(1), sZ(1)])
    ]
    suite = TomographyExperiment(expts, program=Program(X(0), CNOT(0, 1)), qubits=[0, 1])
    assert len(suite) == 4 * 4
    gsuite = group_experiments(suite)
    assert len(gsuite) == 3 * 3  # can get all the terms with I for free in this case

    qc = get_qc('2q-qvm')
    for res in measure_observables(qc, gsuite, n_shots=10_000):
        if res.setting.out_operator in [sI(), sZ(0), sZ(1), sZ(0) * sZ(1)]:
            assert np.abs(res.expectation) > 0.9
        else:
            assert np.abs(res.expectation) < 0.1
示例#3
0
def test_qc_expectation_on_qvm(client_configuration: QCSClientConfiguration, dummy_compiler: DummyCompiler):
    # regression test for https://github.com/rigetti/forest-tutorials/issues/2
    qc = QuantumComputer(name="testy!", qam=QVM(client_configuration=client_configuration), compiler=dummy_compiler)

    p = Program()
    theta = p.declare("theta", "REAL")
    p += RESET()
    p += RY(theta, 0)
    p.wrap_in_numshots_loop(10000)

    sx = ExperimentSetting(in_state=_pauli_to_product_state(sZ(0)), out_operator=sX(0))
    e = Experiment(settings=[sx], program=p)

    thetas = [-np.pi / 2, 0.0, np.pi / 2]
    results = []

    # Verify that multiple calls to qc.experiment with the same experiment backed by a QVM that
    # requires_exectutable does not raise an exception.
    for theta in thetas:
        results.append(qc.experiment(e, memory_map={"theta": [theta]}))

    assert np.isclose(results[0][0].expectation, -1.0, atol=0.01)
    assert np.isclose(results[0][0].std_err, 0)
    assert results[0][0].total_counts == 20000

    # bounds on atol and std_err here are a little loose to try and avoid test flakiness.
    assert np.isclose(results[1][0].expectation, 0.0, atol=0.1)
    assert results[1][0].std_err < 0.01
    assert results[1][0].total_counts == 20000

    assert np.isclose(results[2][0].expectation, 1.0, atol=0.01)
    assert np.isclose(results[2][0].std_err, 0)
    assert results[2][0].total_counts == 20000
示例#4
0
def test_experiment_result():
    er = ExperimentResult(
        setting=ExperimentSetting(sX(0), sZ(0)),
        expectation=0.9,
        stddev=0.05,
    )
    assert str(er) == '(1+0j)*X0→(1+0j)*Z0: 0.9 +- 0.05'
示例#5
0
def test_experiment_deser(tmpdir):
    expts = [
        [
            ExperimentSetting(TensorProductState(), sX(0) * sI(1)),
            ExperimentSetting(TensorProductState(), sI(0) * sX(1)),
        ],
        [
            ExperimentSetting(TensorProductState(), sZ(0) * sI(1)),
            ExperimentSetting(TensorProductState(), sI(0) * sZ(1)),
        ],
    ]

    suite = Experiment(settings=expts, program=Program(X(0), Y(1)))
    to_json(f"{tmpdir}/suite.json", suite)
    suite2 = read_json(f"{tmpdir}/suite.json")
    assert suite == suite2
示例#6
0
def test_stats_from_measurements():
    d_results = {0: np.array([0] * 10), 1: np.array([1] * 10)}
    setting = ExperimentSetting(TensorProductState(), sZ(0) * sX(1))
    n_shots = 1000

    obs_mean, obs_var = _stats_from_measurements(d_results, setting, n_shots)
    assert obs_mean == -1.0
    assert obs_var == 0.0
示例#7
0
def test_is_identity():
    pt1 = -1.5j * sI(2)
    pt2 = 1.5 * sX(1) * sZ(2)

    assert is_identity(pt1)
    assert is_identity(pt2 + (-1 * pt2) + sI(0))
    assert not is_identity(0 * pt1)
    assert not is_identity(pt2 + (-1 * pt2))
示例#8
0
def test_experiment_result():
    er = ExperimentResult(
        setting=ExperimentSetting(plusX(0), sZ(0)),
        expectation=0.9,
        stddev=0.05,
        total_counts=100,
    )
    assert str(er) == 'X0_0→(1+0j)*Z0: 0.9 +- 0.05'
示例#9
0
def train_xor(samples):
    param = [np.pi,0,0,np.pi,np.pi,np.pi,0,0,np.pi]
    s = samples[2]
    sec_reg = QubitPlaceholder()
    val = sim.expectation(address_qubits(fun_xor(s[1], param, s[0])), [sZ(7)]).real[0]
    print(address_qubits(fun_xor(s[1], param, s[0])))
    print(val)
    print(s[2])
    print(abs(val-s[2]))
    # x = sim.expectation(address_qubits(p), [sZ(3)])
    # print(address_qubits(fun_xor(s[1], sec_reg, s[2], param, s[0])))
    # x = sim.expectation(address_qubits(fun_xor(s[1], s[3], x, s[0])), )
    # for s in samples:
    fun = lambda x: abs(sim.expectation(address_qubits(fun_xor(s[1], param, s[0])), [sZ(7)]).real[0] - s[2])
    # fun = lambda x: sim.expectation(address_qubits(fun_xor(s[1], sec_reg, s[2], x, s[0]), [sZ(8)*sZ(0)]))
    res = minimize(fun, np.array(param), method="Nelder-Mead", tol=10**-6)
    return res.x, res.fun
示例#10
0
def test_setting_no_in():
    out_ops = _generate_random_paulis(n_qubits=4, n_terms=7)
    for oop in out_ops:
        expt = ExperimentSetting(zeros_state(oop.get_qubits()), oop)
        expt2 = ExperimentSetting.from_str(str(expt))
        assert expt == expt2
        assert expt2.in_operator == functools.reduce(mul, [sZ(q) for q in oop.get_qubits()], sI())
        assert expt2.out_operator == oop
def test_stabilizer_projection_Z():
    """
    test if we project out the correct state
    """
    stabilizer_state = project_stabilized_state([sZ(0)])
    true_state = np.zeros((2, 1))
    true_state[0, 0] = 1
    assert np.allclose(true_state, stabilizer_state.todense())
示例#12
0
def test_tomo_experiment_pre_grouped():
    expts = [
        [ExperimentSetting(sI(), sX(0) * sI(1)), ExperimentSetting(sI(), sI(0) * sX(1))],
        [ExperimentSetting(sI(), sZ(0) * sI(1)), ExperimentSetting(sI(), sI(0) * sZ(1))],
    ]

    suite = TomographyExperiment(
        settings=expts,
        program=Program(X(0), Y(1)),
        qubits=[0, 1]
    )
    assert len(suite) == 2  # number of groups
    for es1, es2 in zip(expts, suite):
        for e1, e2 in zip(es1, es2):
            assert e1 == e2
    prog_str = str(suite).splitlines()[0]
    assert prog_str == 'X 0; Y 1'
示例#13
0
def test_expectation(forest: ForestConnection):
    # The forest fixture (argument) to this test is to ensure this is
    # skipped when a forest web api key is unavailable. You could also
    # pass it to the constructor of WavefunctionSimulator() but it is not
    # necessary.
    wfnsim = WavefunctionSimulator()
    bell = Program(
        H(0),
        CNOT(0, 1),
    )
    expects = wfnsim.expectation(bell, [
        sZ(0) * sZ(1),
        sZ(0),
        sZ(1),
        sX(0) * sX(1),
    ])
    assert expects.size == 4
    np.testing.assert_allclose(expects, [1, 0, 0, 1])
示例#14
0
def test_multiaddress():
    p = Program()
    q0, q1 = [QubitPlaceholder() for _ in range(2)]
    p += exponential_map(sZ(q0) * sZ(q1))(0.5)

    map1 = {q0: 0, q1: 1}
    map2 = {q0: 9, q1: 10}

    p1 = address_qubits(p, map1)

    with pytest.raises(RuntimeError):
        _ = p.out()  # make sure the original isn't affected

    assert p1.out() == "CNOT 0 1\nRZ(1.0) 1\nCNOT 0 1\n"

    p2 = address_qubits(p, map2)
    assert p1.out() == "CNOT 0 1\nRZ(1.0) 1\nCNOT 0 1\n"
    assert p2.out() == "CNOT 9 10\nRZ(1.0) 10\nCNOT 9 10\n"
示例#15
0
def test_expt_settings_diagonal_in_tpb():
    def _expt_settings_diagonal_in_tpb(es1: ExperimentSetting, es2: ExperimentSetting):
        """
        Extends the concept of being diagonal in the same tpb to ExperimentSettings, by
        determining if the pairs of in_states and out_operators are separately diagonal in the same
        tpb
        """
        max_weight_in = _max_weight_state([es1.in_state, es2.in_state])
        max_weight_out = _max_weight_operator([es1.out_operator, es2.out_operator])
        return max_weight_in is not None and max_weight_out is not None

    expt_setting1 = ExperimentSetting(plusZ(1) * plusX(0), sY(1) * sZ(0))
    expt_setting2 = ExperimentSetting(plusY(2) * plusZ(1), sZ(2) * sY(1))
    assert _expt_settings_diagonal_in_tpb(expt_setting1, expt_setting2)
    expt_setting3 = ExperimentSetting(plusX(2) * plusZ(1), sZ(2) * sY(1))
    expt_setting4 = ExperimentSetting(plusY(2) * plusZ(1), sX(2) * sY(1))
    assert not _expt_settings_diagonal_in_tpb(expt_setting2, expt_setting3)
    assert not _expt_settings_diagonal_in_tpb(expt_setting2, expt_setting4)
示例#16
0
def test_experiment_suite():
    expts = [
        ExperimentSetting(sI(),
                          sX(0) * sY(1)),
        ExperimentSetting(sZ(0), sZ(0)),
    ]

    suite = TomographyExperiment(settings=expts,
                                 program=Program(X(0), Y(1)),
                                 qubits=[0, 1])
    assert len(suite) == 2
    for e1, e2 in zip(expts, suite):
        # experiment suite puts in groups of length 1
        assert len(e2) == 1
        e2 = e2[0]
        assert e1 == e2
    prog_str = str(suite).splitlines()[0]
    assert prog_str == 'X 0; Y 1'
示例#17
0
def test_expectation_helper():
    n_qubits = 3
    wf = np.zeros(shape=((2, ) * n_qubits), dtype=np.complex)
    wf[0, 0, 0] = 1
    z0 = _term_expectation(wf, 0.4 * sZ(0))
    assert z0 == 0.4

    x0 = _term_expectation(wf, sX(2))
    assert x0 == 0
示例#18
0
def test_expt_settings_share_ntpb():
    expts = [[
        ExperimentSetting(zeros_state([0, 1]),
                          sX(0) * sI(1)),
        ExperimentSetting(zeros_state([0, 1]),
                          sI(0) * sX(1))
    ],
             [
                 ExperimentSetting(zeros_state([0, 1]),
                                   sZ(0) * sI(1)),
                 ExperimentSetting(zeros_state([0, 1]),
                                   sI(0) * sZ(1))
             ]]
    for group in expts:
        for e1, e2 in itertools.combinations(group, 2):
            assert _max_weight_state([e1.in_state, e2.in_state]) is not None
            assert _max_weight_operator([e1.out_operator,
                                         e2.out_operator]) is not None
示例#19
0
def test_expt_settings_diagonal_in_tpb():
    expt_setting1 = ExperimentSetting(sZ(1) * sX(0), sY(1) * sZ(0))
    expt_setting2 = ExperimentSetting(sY(2) * sZ(1), sZ(2) * sY(1))
    assert _expt_settings_diagonal_in_tpb(expt_setting1, expt_setting2)
    expt_setting3 = ExperimentSetting(sX(2) * sZ(1), sZ(2) * sY(1))
    expt_setting4 = ExperimentSetting(sY(2) * sZ(1), sX(2) * sY(1))
    assert not _expt_settings_diagonal_in_tpb(expt_setting2, expt_setting3)
    assert not _expt_settings_diagonal_in_tpb(expt_setting2, expt_setting4)
示例#20
0
def test_rotation_programs():
    """
    Testing the generation of post rotations
    """
    test_term = sZ(0) * sX(20) * sI(100) * sY(5)
    # note: string comparison of programs requires gates to be in the same order
    true_rotation_program = Program().inst(
        [RX(np.pi / 2)(5), RY(-np.pi / 2)(20)])
    test_rotation_program = get_rotation_program(test_term)
    assert true_rotation_program.out() == test_rotation_program.out()
def test_projector_generator():
    """
    Test if we are getting accurate projectors--multiqubit case
    """
    true_zero_projector = 0.5 * (sZ(0) + sI(0))
    zero_projector = projector_generator([0], [0])
    assert true_zero_projector == zero_projector

    one_projector = projector_generator([1], [1])
    true_one_projector = 0.5 * (sI(0) - sZ(0))
    assert true_one_projector == one_projector

    lowering_projector = projector_generator([0], [1])
    true_lowering_projector = 0.5 * (sX(0) + 1j * sY(0))
    assert true_lowering_projector == lowering_projector

    raising_projector = projector_generator([1], [0])
    true_raising_projector = 0.5 * (sX(0) - 1j * sY(0))
    assert true_raising_projector == raising_projector
示例#22
0
def test_build_symmetrization_memory_maps():
    p = Program()
    s = ExperimentSetting(in_state=sZ(0) * sZ(1), out_operator=sZ(0) * sZ(1))
    e = TomographyExperiment(settings=[s], program=p)
    memory_maps = [
        {
            "symmetrization": [0.0, 0.0]
        },
        {
            "symmetrization": [0.0, np.pi]
        },
        {
            "symmetrization": [np.pi, 0.0]
        },
        {
            "symmetrization": [np.pi, np.pi]
        },
    ]
    assert e.build_symmetrization_memory_maps([0, 1]) == memory_maps
def test_term_powers():
    for qubit in QubitPlaceholder.register(2):
        pauli_terms = [sI(qubit), sX(qubit), sY(qubit), sZ(qubit)]
        for pauli_term in pauli_terms:
            assert pauli_term**0 == sI(qubit)
            assert pauli_term**1 == pauli_term
            assert pauli_term**2 == sI(qubit)
            assert pauli_term**3 == pauli_term
    with pytest.raises(ValueError):
        pauli_terms[0]**-1
示例#24
0
    def error(order, time_step_length):
        a_pauli = time_step_length * sZ(0) * sY(1) * sX(2)
        a_program = a_pauli.program

        b_pauli = time_step_length * sX(0) * sZ(1) * sY(2)
        b_program = b_pauli.program

        num_qubits = len(a_program.get_qubits())
        assert num_qubits == len(b_program.get_qubits())

        a = program_unitary(a_program, num_qubits)
        b = program_unitary(b_program, num_qubits)
        a_plus_b = a + b
        exp_a_plus_b = expmi(time_step_length * a_plus_b)

        trotter_program = trotterize(a_pauli, b_pauli, trotter_order=order)
        trotter = program_unitary(trotter_program, num_qubits)

        return np.linalg.norm(exp_a_plus_b - trotter, np.inf)
示例#25
0
def init_ham(N_, D_):
    global N
    global D
    global n
    global q
    N = N_
    D = D_
    if D_ == 2:
        n = 4 * N_ - 10
        q = [sZ(x) for x in range(n)]
示例#26
0
def test_max_tpb_overlap_3():
    # add another ExperimentSetting to the above
    expt_setting = ExperimentSetting(PauliTerm.from_compact_str('(1+0j)*Z7Y8Z1Y4Z2Y5Y0X6'),
                                     PauliTerm.from_compact_str('(1+0j)*Z4X8Y5X3Y7Y1'))
    expt_setting2 = ExperimentSetting(sZ(7), sY(1))
    p = Program(H(0), H(1), H(2))
    qubits = [0, 1, 2]
    tomo_expt2 = TomographyExperiment([expt_setting, expt_setting2], p, qubits)
    expected_dict2 = {expt_setting: [expt_setting, expt_setting2]}
    assert expected_dict2 == _max_tpb_overlap(tomo_expt2)
示例#27
0
def test_tomo_experiment_pre_grouped():
    expts = [
        [
            ExperimentSetting(TensorProductState(), sX(0) * sI(1)),
            ExperimentSetting(TensorProductState(), sI(0) * sX(1)),
        ],
        [
            ExperimentSetting(TensorProductState(), sZ(0) * sI(1)),
            ExperimentSetting(TensorProductState(), sI(0) * sZ(1)),
        ],
    ]

    suite = Experiment(settings=expts, program=Program(X(0), Y(1)))
    assert len(suite) == 2  # number of groups
    for es1, es2 in zip(expts, suite):
        for e1, e2 in zip(es1, es2):
            assert e1 == e2
    prog_str = str(suite).splitlines()[3:5]
    assert prog_str == EXPERIMENT_REPR.splitlines()[4:6]
示例#28
0
def test_all_ops_belong_to_tpb():
    expts = [
        [
            ExperimentSetting(sI(),
                              sX(0) * sI(1)),
            ExperimentSetting(sI(),
                              sI(0) * sX(1))
        ],
        [
            ExperimentSetting(sI(),
                              sZ(0) * sI(1)),
            ExperimentSetting(sI(),
                              sI(0) * sZ(1))
        ],
    ]
    for group in expts:
        for e1, e2 in itertools.combinations(group, 2):
            assert _all_qubits_diagonal_in_tpb(e1.in_operator, e2.in_operator)
            assert _all_qubits_diagonal_in_tpb(e1.out_operator,
                                               e2.out_operator)
示例#29
0
def test_group_experiments_greedy():
    ungrouped_tomo_expt = TomographyExperiment([[
        ExperimentSetting(
            PauliTerm.from_compact_str('(1+0j)*Z7Y8Z1Y4Z2Y5Y0X6'),
            PauliTerm.from_compact_str('(1+0j)*Z4X8Y5X3Y7Y1'))
    ], [ExperimentSetting(sZ(7), sY(1))]],
                                               program=Program(
                                                   H(0), H(1), H(2)),
                                               qubits=[0, 1, 2])
    grouped_tomo_expt = group_experiments_greedy(ungrouped_tomo_expt)
    expected_grouped_tomo_expt = TomographyExperiment([[
        ExperimentSetting(
            PauliTerm.from_compact_str('(1+0j)*Z7Y8Z1Y4Z2Y5Y0X6'),
            PauliTerm.from_compact_str('(1+0j)*Z4X8Y5X3Y7Y1')),
        ExperimentSetting(sZ(7), sY(1))
    ]],
                                                      program=Program(
                                                          H(0), H(1), H(2)),
                                                      qubits=[0, 1, 2])
    assert grouped_tomo_expt == expected_grouped_tomo_expt
示例#30
0
def test_append():
    expts = [
        [
            ExperimentSetting(sI(),
                              sX(0) * sI(1)),
            ExperimentSetting(sI(),
                              sI(0) * sX(1))
        ],
        [
            ExperimentSetting(sI(),
                              sZ(0) * sI(1)),
            ExperimentSetting(sI(),
                              sI(0) * sZ(1))
        ],
    ]
    suite = TomographyExperiment(settings=expts,
                                 program=Program(X(0), Y(1)),
                                 qubits=[0, 1])
    suite.append(ExperimentSetting(sI(), sY(0) * sX(1)))
    assert (len(str(suite))) > 0
示例#31
0
from pyquil.paulis import ID, sX, sY, sZ
from pyquil import *
from pyquil.gates import H

import pyquil.paulis as pl

# Pauli term takes an operator "X", "Y", "Z", or "I"; a qubit to act on, and
# an optional coefficient.
a = 1 * ID()
b = -0.75 * sX(0) * sY(1) * sZ(3)
c = (5-2j) * sZ(1) * sX(2)

# Construct a sum of Pauli terms.
sigma = a + b + c
print("sigma = {}".format(sigma))
p = Program()
p.inst(pl.exponentiate_commuting_pauli_sum(sigma))

print(p)