def create_home_pos_task(env_spec: EnvSpec, obs_labels: Sequence[str], state_des: np.ndarray) -> MaskedTask: """ Create a task for moving the robot to safe position. .. note:: This task was designed with an RcsPySim environment in mind, but is not restricted to these environments. :param env_spec: environment specification :param obs_labels: labels for selection, e.g. ['PowerGrasp_R_Y', 'PowerGrasp_R_Z']. This needs to match the observations' names in RcsPySim :param state_des: desired state (depends of the coordinate system). If reached, the task is over. :return: masked task that only considers a subspace of all observations """ # Get the masked environment specification spec = EnvSpec( env_spec.obs_space, env_spec.act_space, env_spec.state_space.subspace( env_spec.state_space.create_mask(obs_labels)), ) # Create a desired state task Q = 1e1 * np.eye(len(state_des)) R = 1e-1 * np.eye(spec.act_space.flat_dim) rew_fcn = ExpQuadrErrRewFcn(Q, R) task = DesStateTask(spec, state_des, rew_fcn) # Return the masked tasks return MaskedTask(env_spec, task, obs_labels)
def _create_task(self, task_args: dict) -> Task: # Define the task including the reward function state_des = task_args.get("state_des", np.array([0.0, np.pi, 0.0, 0.0])) Q = task_args.get("Q", np.diag([3.0, 4.0, 2.0, 2.0])) R = task_args.get("R", np.diag([5e-2])) return RadiallySymmDesStateTask(self.spec, state_des, ExpQuadrErrRewFcn(Q, R), idcs=[1])
def _create_task(self, task_args: dict) -> Task: # Set up task. We track the distance to the goal for both hands separately. continuous_rew_fcn = task_args.get('continuous_rew_fcn', True) mps_left = task_args.get('mps_left') mps_right = task_args.get('mps_right') if continuous_rew_fcn: Q = np.diag([1, 1e-3]) R = 1e-4 * np.eye(self.act_space.flat_dim) rew_fcn_factory = lambda: ExpQuadrErrRewFcn(Q, R) else: rew_fcn_factory = MinusOnePerStepRewFcn succ_thold = 7.5e-2 tasks_left = [ create_goal_dist_distvel_task(self.spec, i, rew_fcn_factory(), succ_thold) for i in range(len(mps_left)) ] tasks_right = [ create_goal_dist_distvel_task(self.spec, i + len(mps_left), rew_fcn_factory(), succ_thold) for i in range(len(mps_right)) ] return ParallelTasks([ SequentialTasks(tasks_left, hold_rew_when_done=continuous_rew_fcn), SequentialTasks(tasks_right, hold_rew_when_done=continuous_rew_fcn), ], hold_rew_when_done=continuous_rew_fcn)
def create_box_lift_task(env_spec: EnvSpec, continuous_rew_fcn: bool, succ_thold: float): # Define the indices for selection. This needs to match the observations' names in RcsPySim. idcs = ['Box_Z'] # Get the masked environment specification spec = EnvSpec( env_spec.obs_space, env_spec.act_space, env_spec.state_space.subspace(env_spec.state_space.create_mask(idcs))) # Create a desired state task # state_des = np.array([0.3]) # box position is measured relative to the table state_des = np.array([1.1]) # box position is measured world coordinates if continuous_rew_fcn: Q = np.diag([3e1]) R = 1e0 * np.eye(spec.act_space.flat_dim) rew_fcn = ExpQuadrErrRewFcn(Q, R) else: rew_fcn = MinusOnePerStepRewFcn() dst = DesStateTask( spec, state_des, rew_fcn, functools.partial(proximity_succeeded, thold_dist=succ_thold)) # Return the masked tasks return MaskedTask(env_spec, dst, idcs)
def create_box_upper_shelve_task(env_spec: EnvSpec, continuous_rew_fcn: bool, succ_thold: float): # Define the indices for selection. This needs to match the observations' names in RcsPySim. idcs = ['Box_X', 'Box_Y', 'Box_Z', 'Box_A', 'Box_B', 'Box_C'] # Get the masked environment specification spec = EnvSpec( env_spec.obs_space, env_spec.act_space, env_spec.state_space.subspace(env_spec.state_space.create_mask(idcs))) # Create a desired state task state_des = np.zeros( 6) # zeros since we observe the box position relative to the goal if continuous_rew_fcn: Q = np.diag([5e0, 5e0, 5e0, 1e-1, 1e-1, 1e-1]) R = 5e-2 * np.eye(spec.act_space.flat_dim) rew_fcn = ExpQuadrErrRewFcn(Q, R) else: rew_fcn = MinusOnePerStepRewFcn dst = DesStateTask( spec, state_des, rew_fcn, functools.partial(proximity_succeeded, thold_dist=succ_thold)) # Return the masked tasks return MaskedTask(env_spec, dst, idcs)
def _create_task(self, task_args: dict) -> Task: # Define the task including the reward function state_des = task_args.get('state_des', np.array([0., np.pi, 0., 0.])) Q = task_args.get('Q', np.diag([2e-1, 1., 2e-2, 5e-3])) R = task_args.get('R', np.diag([3e-3])) return RadiallySymmDesStateTask(self.spec, state_des, ExpQuadrErrRewFcn(Q, R), idcs=[1])
def _create_task(self, task_args: dict) -> Task: # Define the task including the reward function state_des = task_args.get('state_des', None) if state_des is None: state_des = np.array([0., np.pi, 0., 0.]) Q = np.diag([3., 4., 2., 2.]) R = np.diag([5e-2]) return RadiallySymmDesStateTask(self.spec, state_des, ExpQuadrErrRewFcn(Q, R), idcs=[1])
def _create_main_task(self, task_args: dict) -> Task: # Create a DesStateTask that masks everything but the ball position idcs = list( range(self.state_space.flat_dim - 6, self.state_space.flat_dim - 3)) # Cartesian ball position spec = EnvSpec( self.spec.obs_space, self.spec.act_space, self.spec.state_space.subspace( self.spec.state_space.create_mask(idcs))) # If we do not use copy(), state_des coming from MuJoCo is a reference and updates automatically at each step. # Note: sim.forward() + get_body_xpos() results in wrong output for state_des, as sim has not been updated to # init_space.sample(), which is first called in reset() if task_args.get('sparse_rew_fcn', False): factor = task_args.get('success_bonus', 1) # Binary final reward task main_task = FinalRewTask(ConditionOnlyTask( spec, condition_fcn=self.check_ball_in_cup, is_success_condition=True), mode=FinalRewMode(always_positive=True), factor=factor) # Yield -1 on fail after the main task ist done (successfully or not) dont_fail_after_succ_task = FinalRewTask( GoallessTask(spec, ZeroPerStepRewFcn()), mode=FinalRewMode(always_negative=True), factor=factor) # Augment the binary task with an endless dummy task, to avoid early stopping task = SequentialTasks((main_task, dont_fail_after_succ_task)) return MaskedTask(self.spec, task, idcs) else: state_des = self.sim.data.get_site_xpos( 'cup_goal') # this is a reference R_default = np.diag([ 0, 0, 1, 1e-2, 1e-2, 1e-1 ]) if self.num_dof == 7 else np.diag([0, 0, 1e-2, 1e-2]) rew_fcn = ExpQuadrErrRewFcn( Q=task_args.get('Q', np.diag([ 2e1, 1e-4, 2e1 ])), # distance ball - cup; shouldn't move in y-direction R=task_args.get('R', R_default) # last joint is really unreliable ) task = DesStateTask(spec, state_des, rew_fcn) # Wrap the masked DesStateTask to add a bonus for the best state in the rollout return BestStateFinalRewTask(MaskedTask(self.spec, task, idcs), max_steps=self.max_steps, factor=task_args.get( 'final_factor', 0.05))
def _create_task(self, task_args: dict) -> Task: # Create a DesStateTask that masks everything but the ball position idcs = list( range(self.state_space.flat_dim - 3, self.state_space.flat_dim)) # Cartesian ball position spec = EnvSpec( self.spec.obs_space, self.spec.act_space, self.spec.state_space.subspace( self.spec.state_space.create_mask(idcs))) # If we do not use copy(), state_des coming from MuJoCo is a reference and updates automatically at each step. # Note: sim.forward() + get_body_xpos() results in wrong output for state_des, as sim has not been updated to # init_space.sample(), which is first called in reset() if task_args.get('sparse_rew_fcn', False): # Binary final reward task task = FinalRewTask(ConditionOnlyTask( spec, condition_fcn=self.check_ball_in_cup, is_success_condition=True), mode=FinalRewMode(always_positive=True), factor=1) return MaskedTask(self.spec, task, idcs) else: # If we do not use copy(), state_des is a reference to passed body and updates automatically at each step state_des = self.sim.data.get_site_xpos( 'cup_goal') # this is a reference rew_fcn = ExpQuadrErrRewFcn( Q=task_args.get('Q', np.diag([ 1e1, 1e5, 2e1 ])), # distance ball - cup; shouldn't move in y-direction R=task_args.get('R', np.diag([ 1e-1, 1e-1, 1e-1, 1e-2, 1e-2, 1e-2 ])) # desired joint angles and velocities ) task = DesStateTask(spec, state_des, rew_fcn) # Wrap the masked DesStateTask to add a bonus for the best state in the rollout return BestStateFinalRewTask(MaskedTask(self.spec, task, idcs), max_steps=self.max_steps, factor=task_args.get( 'final_factor', 1.))
def create_extract_slider_task(env_spec: EnvSpec, task_args: dict, des_state: np.ndarray): # Define the indices for selection. This needs to match the observations' names in RcsPySim. idcs = ['Slider_Y'] # Get the masked environment specification spec = EnvSpec( env_spec.obs_space, env_spec.act_space, env_spec.state_space.subspace(env_spec.state_space.create_mask(idcs))) # Create a desired state task Q = task_args.get('Q_slider', np.array([[4e1]])) R = task_args.get('R_slider', 1e-6 * np.eye(spec.act_space.flat_dim)) rew_fcn = ExpQuadrErrRewFcn(Q, R) dst_task = DesStateTask(spec, des_state, rew_fcn) # Return the masked tasks return MaskedTask(env_spec, dst_task, idcs)
def create_lifting_task( env_spec: EnvSpec, obs_labels: Sequence[str], des_height: Union[float, np.ndarray], succ_thold: float = 0.01, ) -> MaskedTask: """ Create a task for lifting an object. .. note:: This task was designed with an RcsPySim environment in mind, but is not restricted to these environments. :param env_spec: environment specification :param obs_labels: labels for selection, e.g. ['Box_Z']. This needs to match the observations' names in RcsPySim :param des_height: desired height of the object (depends of the coordinate system). If reached, the task is over. :param succ_thold: once the object of interest is closer than this threshold, the task is considered successfully :return: masked task that only considers a subspace of all observations """ # Get the masked environment specification spec = EnvSpec( env_spec.obs_space, env_spec.act_space, env_spec.state_space.subspace( env_spec.state_space.create_mask(obs_labels)), ) # Create a desired state task state_des = np.asarray(des_height) Q = np.diag([6e2]) R = 1e-1 * np.eye(spec.act_space.flat_dim) rew_fcn = ExpQuadrErrRewFcn(Q, R) task = DesStateTask( spec, state_des, rew_fcn, functools.partial(proximity_succeeded, thold_dist=succ_thold)) # Return the masked tasks return MaskedTask(env_spec, task, obs_labels)
def _create_task(self, task_args: dict) -> Task: # Define the task including the reward function state_des = task_args.get("state_des", None) if state_des is None: # Get the goal position in world coordinates p = self.get_body_position("Goal", "", "") state_des = np.array([p[0], p[2], 0, 0, 0, 0]) # X, Z, B, Xd, Zd, Bd # Create the individual subtasks task_reach_goal = create_insert_task( self.spec, state_des, rew_fcn=ExpQuadrErrRewFcn( Q=np.diag([2e1, 2e1, 1e-1, 1e-2, 1e-2, 1e-2]), R=2e-2 * np.eye(self.act_space.flat_dim)), success_fcn=partial(proximity_succeeded, thold_dist=0.07, dims=[0, 1, 2]), # position and angle ) task_ts_discrepancy = create_task_space_discrepancy_task( self.spec, AbsErrRewFcn(q=0.1 * np.ones(2), r=np.zeros(self.act_space.shape))) return ParallelTasks([task_reach_goal, task_ts_discrepancy])
def _create_task(self, task_args: dict) -> Task: # Define the indices for selection. This needs to match the observations' names in RcsPySim. if task_args.get('consider_velocities', False): idcs = ['Effector_X', 'Effector_Z', 'Effector_Xd', 'Effector_Zd'] else: idcs = ['Effector_X', 'Effector_Z'] # Get the masked environment specification spec = EnvSpec( self.spec.obs_space, self.spec.act_space, self.spec.state_space.subspace( self.spec.state_space.create_mask(idcs))) # Get and set goal position in world coordinates for all three sub-goals p1 = self.get_body_position('Goal1', '', '') p2 = self.get_body_position('Goal2', '', '') p3 = self.get_body_position('Goal3', '', '') if task_args.get('consider_velocities', False): Q = np.diag([1e0, 1e0, 1e-1, 1e-1]) state_des1 = np.array([p1[0], p1[2], 0, 0]) state_des2 = np.array([p2[0], p2[2], 0, 0]) state_des3 = np.array([p3[0], p3[2], 0, 0]) else: Q = np.diag([1e0, 1e0]) state_des1 = np.array([p1[0], p1[2]]) state_des2 = np.array([p2[0], p2[2]]) state_des3 = np.array([p3[0], p3[2]]) success_fcn = functools.partial(proximity_succeeded, thold_dist=7.5e-2, dims=[0, 1]) # min distance = 7cm R = np.zeros((spec.act_space.flat_dim, spec.act_space.flat_dim)) # Create the tasks subtask_11 = FinalRewTask(DesStateTask(spec, state_des1, ExpQuadrErrRewFcn(Q, R), success_fcn), mode=FinalRewMode(time_dependent=True)) subtask_21 = FinalRewTask(DesStateTask(spec, state_des2, ExpQuadrErrRewFcn(Q, R), success_fcn), mode=FinalRewMode(time_dependent=True)) subtask_1p = ParallelTasks([subtask_11, subtask_21], hold_rew_when_done=True, verbose=False) subtask_3 = FinalRewTask(DesStateTask(spec, state_des3, ExpQuadrErrRewFcn(Q, R), success_fcn), mode=FinalRewMode(time_dependent=True)) subtask_12 = FinalRewTask(DesStateTask(spec, state_des1, ExpQuadrErrRewFcn(Q, R), success_fcn), mode=FinalRewMode(time_dependent=True)) subtask_22 = FinalRewTask(DesStateTask(spec, state_des2, ExpQuadrErrRewFcn(Q, R), success_fcn), mode=FinalRewMode(time_dependent=True)) subtask_2p = ParallelTasks([subtask_12, subtask_22], hold_rew_when_done=True, verbose=False) task = FinalRewTask(SequentialTasks( [subtask_1p, subtask_3, subtask_2p], hold_rew_when_done=True, verbose=True), mode=FinalRewMode(always_positive=True), factor=2e3) masked_task = MaskedTask(self.spec, task, idcs) task_check_bounds = create_check_all_boundaries_task(self.spec, penalty=1e3) # Return the masked task and and additional task that ends the episode if the unmasked state is out of bound return ParallelTasks([masked_task, task_check_bounds])
def _create_task(self, task_args: dict) -> Task: # Define the indices for selection. This needs to match the observations' names in RcsPySim. if task_args.get("consider_velocities", False): idcs = ["Effector_X", "Effector_Z", "Effector_Xd", "Effector_Zd"] else: idcs = ["Effector_X", "Effector_Z"] # Get the masked environment specification spec = EnvSpec( self.spec.obs_space, self.spec.act_space, self.spec.state_space.subspace( self.spec.state_space.create_mask(idcs)), ) # Get the goal position in world coordinates for all three sub-goals p1 = self.get_body_position("Goal1", "", "") p2 = self.get_body_position("Goal2", "", "") p3 = self.get_body_position("Goal3", "", "") state_des1 = np.array([p1[0], p1[2], 0, 0]) state_des2 = np.array([p2[0], p2[2], 0, 0]) state_des3 = np.array([p3[0], p3[2], 0, 0]) if task_args.get("consider_velocities", False): Q = np.diag([5e-1, 5e-1, 5e-3, 5e-3]) else: Q = np.diag([1e0, 1e0]) state_des1 = state_des1[:2] state_des2 = state_des2[:2] state_des3 = state_des3[:2] success_fcn = partial(proximity_succeeded, thold_dist=7.5e-2, dims=[0, 1]) # min distance = 7cm R = np.zeros((spec.act_space.flat_dim, spec.act_space.flat_dim)) # Create the tasks subtask_1 = FinalRewTask(DesStateTask(spec, state_des1, ExpQuadrErrRewFcn(Q, R), success_fcn), mode=FinalRewMode(time_dependent=True)) subtask_2 = FinalRewTask(DesStateTask(spec, state_des2, ExpQuadrErrRewFcn(Q, R), success_fcn), mode=FinalRewMode(time_dependent=True)) subtask_3 = FinalRewTask(DesStateTask(spec, state_des3, ExpQuadrErrRewFcn(Q, R), success_fcn), mode=FinalRewMode(time_dependent=True)) subtask_4 = FinalRewTask(DesStateTask(spec, state_des1, ExpQuadrErrRewFcn(Q, R), success_fcn), mode=FinalRewMode(time_dependent=True)) subtask_5 = FinalRewTask(DesStateTask(spec, state_des2, ExpQuadrErrRewFcn(Q, R), success_fcn), mode=FinalRewMode(time_dependent=True)) subtask_6 = FinalRewTask(DesStateTask(spec, state_des3, ExpQuadrErrRewFcn(Q, R), success_fcn), mode=FinalRewMode(time_dependent=True)) task = FinalRewTask( SequentialTasks( [ subtask_1, subtask_2, subtask_3, subtask_4, subtask_5, subtask_6 ], hold_rew_when_done=True, verbose=True, ), mode=FinalRewMode(always_positive=True), factor=5e3, ) masked_task = MaskedTask(self.spec, task, idcs) # Additional tasks task_check_bounds = create_check_all_boundaries_task(self.spec, penalty=1e3) if isinstance(self, Planar3LinkJointCtrlSim): # Return the masked task and and additional task that ends the episode if the unmasked state is out of bound return ParallelTasks([masked_task, task_check_bounds], easily_satisfied=True) else: task_ts_discrepancy = create_task_space_discrepancy_task( self.spec, AbsErrRewFcn(q=0.5 * np.ones(2), r=np.zeros(self.act_space.shape))) # Return the masked task and and additional task that ends the episode if the unmasked state is out of bound return ParallelTasks( [masked_task, task_check_bounds, task_ts_discrepancy], easily_satisfied=True)