示例#1
0
"""
Script to plot the GP's posterior after a Bayesian Domain Randomization experiment
"""
import os.path as osp
import torch as to
from matplotlib import pyplot as plt

import pyrado
from pyrado.logger.experiment import ask_for_experiment
from pyrado.plotting.gaussian_process import render_singletask_gp
from pyrado.utils.argparser import get_argparser


if __name__ == '__main__':
    # Parse command line arguments
    args = get_argparser().parse_args()
    plt.rc('text', usetex=args.use_tex)

    # Get the experiment's directory to load from
    ex_dir = ask_for_experiment() if args.ex_dir is None else args.ex_dir

    cands = to.load(osp.join(ex_dir, 'candidates.pt'))
    cands_values = to.load(osp.join(ex_dir, 'candidates_values.pt')).unsqueeze(1)

    dim_cand = cands.shape[1]  # number of domain distribution parameters
    if dim_cand%2 != 0:
        raise pyrado.ShapeErr(msg='The dimension of domain distribution parameters must be a multiple of 2!')

    # Select dimensions to plot (ignored for 1D mode)
    if len(args.idcs) != 2:
        raise pyrado.ShapeErr(msg='Select exactly 2 indices!')
示例#2
0
from pyrado.algorithms.step_based.gae import GAE
from pyrado.algorithms.step_based.ppo import PPO
from pyrado.domain_randomization.domain_parameter import SelfPacedDomainParam
from pyrado.domain_randomization.domain_randomizer import DomainRandomizer
from pyrado.environment_wrappers.action_normalization import ActNormWrapper
from pyrado.environment_wrappers.domain_randomization import DomainRandWrapperLive
from pyrado.environments.pysim.quanser_qube import QQubeSwingUpSim
from pyrado.logger.experiment import save_dicts_to_yaml, setup_experiment
from pyrado.policies.feed_back.fnn import FNNPolicy
from pyrado.spaces import ValueFunctionSpace
from pyrado.utils.argparser import get_argparser
from pyrado.utils.data_types import EnvSpec

if __name__ == "__main__":
    # Parse command line arguments
    parser = get_argparser()
    parser.add_argument("--frequency", default=250, type=int)
    parser.set_defaults(max_steps=600)
    parser.add_argument("--ppo_iterations", default=150, type=int)
    parser.add_argument("--sprl_iterations", default=50, type=int)
    parser.add_argument("--cov_only", action="store_true")
    args = parser.parse_args()

    # Experiment (set seed before creating the modules)
    ex_dir = setup_experiment(
        QQubeSwingUpSim.name,
        f"{PPO.name}_{FNNPolicy.name}",
        f"{args.frequency}Hz_{args.max_steps}ROLen_{args.ppo_iterations}PPOIter_{args.sprl_iterations}SPRLIter_cov_only{args.cov_only}_seed_{args.seed}",
    )

    # Set seed if desired
示例#3
0
def load_experiment(
        ex_dir: str,
        args: Any = None) -> (Union[SimEnv, EnvWrapper], Policy, dict):
    """
    Load the (training) environment and the policy.
    This helper function first tries to read the hyper-parameters yaml-file in the experiment's directory to infer
    why entities should be loaded. If no file was found, we fall back to some heuristic and hope for the best.

    :param ex_dir: experiment's parent directory
    :param args: arguments from the argument parser, pass `None` to fall back to the values from the default argparser
    :return: environment, policy, and optional output (e.g. valuefcn)
    """
    env, policy, extra = None, None, dict()

    if args is None:
        # Fall back to default arguments. By passing [], we ignore the command line arguments
        args = get_argparser().parse_args([])

    # Hyper-parameters
    hparams_file_name = 'hyperparams.yaml'
    try:
        hparams = load_dict_from_yaml(osp.join(ex_dir, hparams_file_name))
        extra['hparams'] = hparams
    except (pyrado.PathErr, FileNotFoundError, KeyError):
        print_cbt(
            f'Did not find {hparams_file_name} in {ex_dir} or could not crawl the loaded hyper-parameters.',
            'y',
            bright=True)

    # Algorithm specific
    algo = Algorithm.load_snapshot(load_dir=ex_dir, load_name='algo')
    if isinstance(algo, BayRn):
        # Environment
        env = pyrado.load(None, 'env_sim', 'pkl', ex_dir, None)
        print_cbt(f"Loaded {osp.join(ex_dir, 'env_sim.pkl')}.", 'g')
        if hasattr(env, 'randomizer'):
            last_cand = to.load(osp.join(ex_dir, 'candidates.pt'))[-1, :]
            env.adapt_randomizer(last_cand.numpy())
            print_cbt(f'Loaded the domain randomizer\n{env.randomizer}', 'w')
        else:
            print_cbt('Loaded environment has no randomizer.', 'r')
        # Policy
        policy = pyrado.load(algo.policy, f'{args.policy_name}', 'pt', ex_dir,
                             None)
        print_cbt(f"Loaded {osp.join(ex_dir, f'{args.policy_name}.pt')}", 'g')
        # Extra (value function)
        if isinstance(algo.subroutine, ActorCritic):
            extra['vfcn'] = pyrado.load(algo.subroutine.critic.vfcn,
                                        f'{args.vfcn_name}', 'pt', ex_dir,
                                        None)
            print_cbt(f"Loaded {osp.join(ex_dir, f'{args.vfcn_name}.pt')}",
                      'g')

    elif isinstance(algo, SPOTA):
        # Environment
        env = pyrado.load(None, 'env', 'pkl', ex_dir, None)
        print_cbt(f"Loaded {osp.join(ex_dir, 'env.pkl')}.", 'g')
        if hasattr(env, 'randomizer'):
            if not isinstance(env.randomizer, DomainRandWrapperBuffer):
                raise pyrado.TypeErr(given=env.randomizer,
                                     expected_type=DomainRandWrapperBuffer)
            typed_env(env, DomainRandWrapperBuffer).fill_buffer(100)
            print_cbt(
                f"Loaded {osp.join(ex_dir, 'env.pkl')} and filled it with 100 random instances.",
                'g')
        else:
            print_cbt('Loaded environment has no randomizer.', 'r')
        # Policy
        policy = pyrado.load(algo.subroutine_cand.policy,
                             f'{args.policy_name}', 'pt', ex_dir, None)
        print_cbt(f"Loaded {osp.join(ex_dir, f'{args.policy_name}.pt')}", 'g')
        # Extra (value function)
        if isinstance(algo.subroutine_cand, ActorCritic):
            extra['vfcn'] = pyrado.load(algo.subroutine_cand.critic.vfcn,
                                        f'{args.vfcn_name}', 'pt', ex_dir,
                                        None)
            print_cbt(f"Loaded {osp.join(ex_dir, f'{args.vfcn_name}.pt')}",
                      'g')

    elif isinstance(algo, SimOpt):
        # Environment
        env = pyrado.load(None, 'env_sim', 'pkl', ex_dir, None)
        print_cbt(f"Loaded {osp.join(ex_dir, 'env_sim.pkl')}.", 'g')
        if hasattr(env, 'randomizer'):
            last_cand = to.load(osp.join(ex_dir, 'candidates.pt'))[-1, :]
            env.adapt_randomizer(last_cand.numpy())
            print_cbt(f'Loaded the domain randomizer\n{env.randomizer}', 'w')
        else:
            print_cbt('Loaded environment has no randomizer.', 'r')
        # Policy
        policy = pyrado.load(algo.subroutine_policy.policy,
                             f'{args.policy_name}', 'pt', ex_dir, None)
        print_cbt(f"Loaded {osp.join(ex_dir, f'{args.policy_name}.pt')}", 'g')
        # Extra (domain parameter distribution policy)
        extra['ddp_policy'] = pyrado.load(algo.subroutine_distr.policy,
                                          'ddp_policy', 'pt', ex_dir, None)

    elif isinstance(algo, (EPOpt, UDR)):
        # Environment
        env = pyrado.load(None, 'env_sim', 'pkl', ex_dir, None)
        if hasattr(env, 'randomizer'):
            if not isinstance(env.randomizer, DomainRandWrapperLive):
                raise pyrado.TypeErr(given=env.randomizer,
                                     expected_type=DomainRandWrapperLive)
            print_cbt(
                f"Loaded {osp.join(ex_dir, 'env.pkl')} with DomainRandWrapperLive randomizer.",
                'g')
        else:
            print_cbt('Loaded environment has no randomizer.', 'y')
        # Policy
        policy = pyrado.load(algo.policy, f'{args.policy_name}', 'pt', ex_dir,
                             None)
        print_cbt(f"Loaded {osp.join(ex_dir, f'{args.policy_name}.pt')}", 'g')
        # Extra (value function)
        if isinstance(algo.subroutine, ActorCritic):
            extra['vfcn'] = pyrado.load(algo.subroutine.critic.vfcn,
                                        f'{args.vfcn_name}', 'pt', ex_dir,
                                        None)
            print_cbt(f"Loaded {osp.join(ex_dir, f'{args.vfcn_name}.pt')}",
                      'g')

    elif isinstance(algo, ActorCritic):
        # Environment
        env = pyrado.load(None, 'env', 'pkl', ex_dir, None)
        # Policy
        policy = pyrado.load(algo.policy, f'{args.policy_name}', 'pt', ex_dir,
                             None)
        print_cbt(f"Loaded {osp.join(ex_dir, f'{args.policy_name}.pt')}", 'g')
        # Extra (value function)
        extra['vfcn'] = pyrado.load(algo.critic.vfcn, f'{args.vfcn_name}',
                                    'pt', ex_dir, None)
        print_cbt(f"Loaded {osp.join(ex_dir, f'{args.vfcn_name}.pt')}", 'g')

    elif isinstance(algo, ParameterExploring):
        # Environment
        env = pyrado.load(None, 'env', 'pkl', ex_dir, None)
        # Policy
        policy = pyrado.load(algo.policy, f'{args.policy_name}', 'pt', ex_dir,
                             None)
        print_cbt(f"Loaded {osp.join(ex_dir, f'{args.policy_name}.pt')}", 'g')

    elif isinstance(algo, ValueBased):
        # Environment
        env = pyrado.load(None, 'env', 'pkl', ex_dir, None)
        # Policy
        policy = pyrado.load(algo.policy, f'{args.policy_name}', 'pt', ex_dir,
                             None)
        print_cbt(f"Loaded {osp.join(ex_dir, f'{args.policy_name}.pt')}", 'g')
        # Target value functions
        if isinstance(algo, DQL):
            extra['qfcn_target'] = pyrado.load(algo.qfcn_targ, 'qfcn_target',
                                               'pt', ex_dir, None)
            print_cbt(f"Loaded {osp.join(ex_dir, 'qfcn_target.pt')}", 'g')
        elif isinstance(algo, SAC):
            extra['qfcn_target1'] = pyrado.load(algo.qfcn_targ_1,
                                                'qfcn_target1', 'pt', ex_dir,
                                                None)
            extra['qfcn_target2'] = pyrado.load(algo.qfcn_targ_2,
                                                'qfcn_target2', 'pt', ex_dir,
                                                None)
            print_cbt(
                f"Loaded {osp.join(ex_dir, 'qfcn_target1.pt')} and {osp.join(ex_dir, 'qfcn_target2.pt')}",
                'g')
        else:
            raise NotImplementedError

    elif isinstance(algo, SVPG):
        # Environment
        env = pyrado.load(None, 'env', 'pkl', ex_dir, None)
        # Policy
        policy = pyrado.load(algo.policy, f'{args.policy_name}', 'pt', ex_dir,
                             None)
        print_cbt(f"Loaded {osp.join(ex_dir, f'{args.policy_name}.pt')}", 'g')
        # Extra (particles)
        for idx, p in enumerate(algo.particles):
            extra[f'particle{idx}'] = pyrado.load(algo.particles[idx],
                                                  f'particle_{idx}', 'pt',
                                                  ex_dir, None)

    elif isinstance(algo, TSPred):
        # Dataset
        extra['dataset'] = to.load(osp.join(ex_dir, 'dataset.pt'))
        # Policy
        policy = pyrado.load(algo.policy, f'{args.policy_name}', 'pt', ex_dir,
                             None)

    else:
        raise pyrado.TypeErr(
            msg=
            'No matching algorithm name found during loading the experiment!')

    # Check if the return types are correct. They can be None, too.
    if env is not None and not isinstance(env, (SimEnv, EnvWrapper)):
        raise pyrado.TypeErr(given=env, expected_type=[SimEnv, EnvWrapper])
    if policy is not None and not isinstance(policy, Policy):
        raise pyrado.TypeErr(given=policy, expected_type=Policy)
    if extra is not None and not isinstance(extra, dict):
        raise pyrado.TypeErr(given=extra, expected_type=dict)

    return env, policy, extra
示例#4
0
def load_experiment(
    ex_dir: str,
    args: Any = None
) -> Tuple[Optional[Union[SimEnv, EnvWrapper]], Optional[Policy],
           Optional[dict]]:
    """
    Load the (training) environment and the policy.
    This helper function first tries to read the hyper-parameters yaml-file in the experiment's directory to infer
    why entities should be loaded. If no file was found, we fall back to some heuristic and hope for the best.

    :param ex_dir: experiment's parent directory
    :param args: arguments from the argument parser, pass `None` to fall back to the values from the default argparser
    :return: environment, policy, and optional output (e.g. valuefcn)
    """
    env, policy, extra = None, None, dict()

    if args is None:
        # Fall back to default arguments. By passing [], we ignore the command line arguments
        args = get_argparser().parse_args([])

    # Hyper-parameters
    extra["hparams"] = load_hyperparameters(ex_dir)

    # Algorithm specific
    algo = Algorithm.load_snapshot(load_dir=ex_dir, load_name="algo")

    if algo.name == "spota":
        # Environment
        env = pyrado.load("env.pkl", ex_dir)
        if getattr(env, "randomizer", None) is not None:
            if not isinstance(env, DomainRandWrapperBuffer):
                raise pyrado.TypeErr(given=env,
                                     expected_type=DomainRandWrapperBuffer)
            typed_env(env, DomainRandWrapperBuffer).fill_buffer(10)
            print_cbt(
                f"Loaded the domain randomizer\n{env.randomizer}\nand filled it with 10 random instances.",
                "w")
        else:
            print_cbt("Loaded environment has no randomizer, or it is None.",
                      "r")
        # Policy
        policy = pyrado.load(algo.subroutine_cand.policy,
                             f"{args.policy_name}.pt",
                             ex_dir,
                             verbose=True)
        # Extra (value function)
        if isinstance(algo.subroutine_cand, ActorCritic):
            extra["vfcn"] = pyrado.load(algo.subroutine_cand.critic.vfcn,
                                        f"{args.vfcn_name}.pt",
                                        ex_dir,
                                        verbose=True)

    elif algo.name == "bayrn":
        # Environment
        env = pyrado.load("env_sim.pkl", ex_dir)
        if hasattr(env, "randomizer"):
            last_cand = to.load(osp.join(ex_dir, "candidates.pt"))[-1, :]
            env.adapt_randomizer(last_cand.numpy())
            print_cbt(f"Loaded the domain randomizer\n{env.randomizer}", "w")
        else:
            print_cbt("Loaded environment has no randomizer, or it is None.",
                      "r")
        # Policy
        policy = pyrado.load(f"{args.policy_name}.pt",
                             ex_dir,
                             obj=algo.policy,
                             verbose=True)
        # Extra (value function)
        if isinstance(algo.subroutine, ActorCritic):
            extra["vfcn"] = pyrado.load(f"{args.vfcn_name}.pt",
                                        ex_dir,
                                        obj=algo.subroutine.critic.vfcn,
                                        verbose=True)

    elif algo.name == "simopt":
        # Environment
        env = pyrado.load("env_sim.pkl", ex_dir)
        if getattr(env, "randomizer", None) is not None:
            last_cand = to.load(osp.join(ex_dir, "candidates.pt"))[-1, :]
            env.adapt_randomizer(last_cand.numpy())
            print_cbt(f"Loaded the domain randomizer\n{env.randomizer}", "w")
        else:
            print_cbt("Loaded environment has no randomizer, or it is None.",
                      "r")
        # Policy
        policy = pyrado.load(f"{args.policy_name}.pt",
                             ex_dir,
                             obj=algo.subroutine_policy.policy,
                             verbose=True)
        # Extra (domain parameter distribution policy)
        extra["ddp_policy"] = pyrado.load("ddp_policy.pt",
                                          ex_dir,
                                          obj=algo.subroutine_distr.policy,
                                          verbose=True)

    elif algo.name in ["epopt", "udr"]:
        # Environment
        env = pyrado.load("env_sim.pkl", ex_dir)
        if getattr(env, "randomizer", None) is not None:
            if not isinstance(env, DomainRandWrapperLive):
                raise pyrado.TypeErr(given=env,
                                     expected_type=DomainRandWrapperLive)
            print_cbt(f"Loaded the domain randomizer\n{env.randomizer}", "w")
        else:
            print_cbt("Loaded environment has no randomizer, or it is None.",
                      "y")
        # Policy
        policy = pyrado.load(f"{args.policy_name}.pt",
                             ex_dir,
                             obj=algo.policy,
                             verbose=True)
        # Extra (value function)
        if isinstance(algo.subroutine, ActorCritic):
            extra["vfcn"] = pyrado.load(f"{args.vfcn_name}.pt",
                                        ex_dir,
                                        obj=algo.subroutine.critic.vfcn,
                                        verbose=True)

    elif algo.name in ["bayessim", "npdr"]:
        # Environment
        env = pyrado.load("env_sim.pkl", ex_dir)
        if getattr(env, "randomizer", None) is not None:
            if not isinstance(env, DomainRandWrapperBuffer):
                raise pyrado.TypeErr(given=env,
                                     expected_type=DomainRandWrapperBuffer)
            typed_env(env, DomainRandWrapperBuffer).fill_buffer(10)
            print_cbt(
                f"Loaded the domain randomizer\n{env.randomizer}\nand filled it with 10 random instances.",
                "w")
        else:
            print_cbt("Loaded environment has no randomizer, or it is None.",
                      "y")
            env = remove_all_dr_wrappers(env, verbose=True)
        # Policy
        policy = pyrado.load(f"{args.policy_name}.pt",
                             ex_dir,
                             obj=algo.policy,
                             verbose=True)
        # Extra (prior, posterior, data)
        extra["prior"] = pyrado.load("prior.pt", ex_dir, verbose=True)
        # By default load the latest posterior (latest iteration and the last round)
        try:
            extra["posterior"] = algo.load_posterior(ex_dir,
                                                     args.iter,
                                                     args.round,
                                                     obj=None,
                                                     verbose=True)
            # Load the complete data or the data of the given iteration
            prefix = "" if args.iter == -1 else f"iter_{args.iter}"
            extra["data_real"] = pyrado.load(f"data_real.pt",
                                             ex_dir,
                                             prefix=prefix,
                                             verbose=True)
        except FileNotFoundError:
            pass

    elif algo.name in ["a2c", "ppo", "ppo2"]:
        # Environment
        env = pyrado.load("env.pkl", ex_dir)
        # Policy
        policy = pyrado.load(f"{args.policy_name}.pt",
                             ex_dir,
                             obj=algo.policy,
                             verbose=True)
        # Extra (value function)
        extra["vfcn"] = pyrado.load(f"{args.vfcn_name}.pt",
                                    ex_dir,
                                    obj=algo.critic.vfcn,
                                    verbose=True)

    elif algo.name in ["hc", "pepg", "power", "cem", "reps", "nes"]:
        # Environment
        env = pyrado.load("env.pkl", ex_dir)
        # Policy
        policy = pyrado.load(f"{args.policy_name}.pt",
                             ex_dir,
                             obj=algo.policy,
                             verbose=True)

    elif algo.name in ["dql", "sac"]:
        # Environment
        env = pyrado.load("env.pkl", ex_dir)
        # Policy
        policy = pyrado.load(f"{args.policy_name}.pt",
                             ex_dir,
                             obj=algo.policy,
                             verbose=True)
        # Target value functions
        if algo.name == "dql":
            extra["qfcn_target"] = pyrado.load("qfcn_target.pt",
                                               ex_dir,
                                               obj=algo.qfcn_targ,
                                               verbose=True)
        elif algo.name == "sac":
            extra["qfcn_target1"] = pyrado.load("qfcn_target1.pt",
                                                ex_dir,
                                                obj=algo.qfcn_targ_1,
                                                verbose=True)
            extra["qfcn_target2"] = pyrado.load("qfcn_target2.pt",
                                                ex_dir,
                                                obj=algo.qfcn_targ_2,
                                                verbose=True)
        else:
            raise NotImplementedError

    elif algo.name == "svpg":
        # Environment
        env = pyrado.load("env.pkl", ex_dir)
        # Policy
        policy = pyrado.load(f"{args.policy_name}.pt",
                             ex_dir,
                             obj=algo.policy,
                             verbose=True)
        # Extra (particles)
        for idx, p in enumerate(algo.particles):
            extra[f"particle{idx}"] = pyrado.load(f"particle_{idx}.pt",
                                                  ex_dir,
                                                  obj=algo.particles[idx],
                                                  verbose=True)

    elif algo.name == "tspred":
        # Dataset
        extra["dataset"] = to.load(osp.join(ex_dir, "dataset.pt"))
        # Policy
        policy = pyrado.load(f"{args.policy_name}.pt",
                             ex_dir,
                             obj=algo.policy,
                             verbose=True)

    elif algo.name == "sprl":
        # Environment
        env = pyrado.load("env.pkl", ex_dir)
        print_cbt(f"Loaded {osp.join(ex_dir, 'env.pkl')}.", "g")
        # Policy
        policy = pyrado.load(f"{args.policy_name}.pt", ex_dir, obj=algo.policy)
        print_cbt(f"Loaded {osp.join(ex_dir, f'{args.policy_name}.pt')}", "g")
        # Extra (value function)
        if isinstance(algo._subroutine, ActorCritic):
            extra["vfcn"] = pyrado.load(f"{args.vfcn_name}.pt",
                                        ex_dir,
                                        obj=algo._subroutine.critic.vfcn,
                                        verbose=True)

    elif algo.name == "pddr":
        # Environment
        env = pyrado.load("env.pkl", ex_dir)
        # Policy
        policy = pyrado.load(f"{args.policy_name}.pt",
                             ex_dir,
                             obj=algo.policy,
                             verbose=True)
        # Teachers
        extra["teacher_policies"] = algo.teacher_policies
        extra["teacher_envs"] = algo.teacher_envs
        extra["teacher_expl_strats"] = algo.teacher_expl_strats
        extra["teacher_critics"] = algo.teacher_critics
        extra["teacher_ex_dirs"] = algo.teacher_ex_dirs

    else:
        raise pyrado.TypeErr(
            msg=
            "No matching algorithm name found during loading the experiment!")

    # Check if the return types are correct. They can be None, too.
    if env is not None and not isinstance(env, (SimEnv, EnvWrapper)):
        raise pyrado.TypeErr(given=env, expected_type=[SimEnv, EnvWrapper])
    if policy is not None and not isinstance(policy, Policy):
        raise pyrado.TypeErr(given=policy, expected_type=Policy)
    if extra is not None and not isinstance(extra, dict):
        raise pyrado.TypeErr(given=extra, expected_type=dict)

    return env, policy, extra
示例#5
0
def _main():
    # Parse command line arguments
    argparser = get_argparser()
    argparser.add_argument(
        "--average",
        action="store_true",
        help=
        "average over all loaded policies (default: False); create only a single heatmap",
    )
    argparser.add_argument(
        "--save_dir",
        help="if --average is set, the directory to save the plot to")
    args = argparser.parse_args()

    # Get the experiment's directory to load from
    if args.dir is None:
        ex_dirs = []
        while True:
            ex_dirs.append(
                ask_for_experiment(
                    show_hyper_parameters=args.show_hyperparameters,
                    max_display=50))
            if input("Ask for more (Y/n)? ") == "n":
                break
    else:
        ex_dirs = [d.strip() for d in args.dir.split(",")]
    eval_parent_dirs = []
    for ex_dir in ex_dirs:
        eval_parent_dir = osp.join(ex_dir, "eval_domain_grid")
        if not osp.isdir(eval_parent_dir):
            raise pyrado.PathErr(given=eval_parent_dir)
        eval_parent_dirs.append(eval_parent_dir)

    if args.load_all:
        list_eval_dirs = []
        for eval_parent_dir in eval_parent_dirs:
            list_eval_dirs += [tmp[0] for tmp in os.walk(eval_parent_dir)][1:]
    else:
        list_eval_dirs = [
            osp.join(eval_parent_dir, "ENV_NAME", "ALGO_NAME")
            for eval_parent_dir in eval_parent_dirs
        ]

    dataframes, eval_dirs = [], []
    for eval_dir in list_eval_dirs:
        assert osp.isdir(eval_dir)

        # Load the data
        pickle_file = osp.join(eval_dir, "df_sp_grid_2d.pkl")
        if not osp.isfile(pickle_file):
            print(f"{pickle_file} is not a file! Skipping...")
            continue
        df = pd.read_pickle(pickle_file)

        dataframes.append(df)
        eval_dirs.append(eval_dir)

    if args.average:
        _plot([sum(dataframes) / len(dataframes)], [args.save_dir], True)
    else:
        _plot(dataframes, eval_dirs, args.save)