示例#1
0
def wavesol(arcfiles, rawpath):
    for f in arcfiles:
        binning = get_binning(f, rawpath)
        iraf.unlearn(iraf.gsreduce)
        if dobias:
            bias_filename = "bias{binning}".format(binning=binning)
        else:
            bias_filename = ''
        iraf.gsreduce('@' + f, outimages=f[:-4], rawpath=rawpath,
                      fl_flat=False, bias=bias_filename, fl_bias=dobias,
                      fl_fixpix=False, fl_over=dooverscan, fl_cut=False, fl_gmosaic=True,
                      fl_gsappwave=True, fl_oversize=False, fl_vardq=dodq)


        # determine wavelength calibration -- 1d and 2d
        iraf.unlearn(iraf.gswavelength)
        iraf.gswavelength(f[:-4], fl_inter='yes', fl_addfeat=False, fwidth=15.0, low_reject=2.0,
                          high_reject=2.0, step=10, nsum=10, gsigma=2.0,
                          cradius=16.0, match=-6, order=7, fitcxord=7,
                          fitcyord=7)

        if do_qecorr:
            # Make an extra random copy so that gqecorr works. Stupid Gemini.
            iraf.cp(f[:-4]+'.fits', f[:-4]+'.arc.fits')
        # transform the CuAr spectrum, for checking that the transformation is OK
        # output spectrum has prefix t
        iraf.unlearn(iraf.gstransform)
        iraf.gstransform(f[:-4], wavtran=f[:-4])
示例#2
0
    def calWave(self, arcList, **kwargs):

        iraf.gswavelength(arcList, **kwargs)

        # TODO: include call to gftransform to rectify arcs?

        return
示例#3
0
def wavesol(arcfiles, rawpath):
    for f in arcfiles:
        iraf.unlearn(iraf.gsreduce)
        iraf.gsreduce('@' + f, outimages=f[:-4], rawpath=rawpath,
                      fl_flat=False, bias="bias",
                      fl_fixpix=False, fl_over=dooverscan, fl_cut=False, fl_gmosaic=True,
                      fl_gsappwave=True, fl_oversize=False)


        # determine wavelength calibration -- 1d and 2d
        iraf.unlearn(iraf.gswavelength)
        iraf.gswavelength(f[:-4], fl_inter='yes', fwidth=15.0, low_reject=2.0,
                          high_reject=2.0, step=10, nsum=10, gsigma=2.0,
                          cradius=16.0, match=-6, order=7, fitcxord=7,
                          fitcyord=7)

        if is_GS:
            # Make an extra random copy so that gqecorr works. Stupid Gemini.
            shutil.copy(f[:-4]+'.fits', f[:-4]+'.arc.fits')
        # transform the CuAr spectrum, for checking that the transformation is OK
        # output spectrum has prefix t
        iraf.unlearn(iraf.gstransform)
        iraf.gstransform(f[:-4], wavtran=f[:-4])
示例#4
0
scidir= '/Users/bkirk/Documents/A851/Science/'
proc_logs='/Users/bkirk/Documents/A851/proc_logs/'
calibdir='/Users/bkirk/Documents/A851/bias_frame/'
flatdir='/Users/bkirk/Documents/A851/Flat/'


gmos.logfile="A851_cuar.log"


#At the moment it'll be easier to pick the flats by hand rather than scripting a way through to find a flat that matches the arc frame specs. These are the flats whose dimensions I'll use to cut the arc frames.
flat_mask1_660 = '%sdc_mN20011221S139_norm_flat.fits' % scidir
flat_mask1_670 = '%sdc_mN20011220S156_norm_flat.fits' % scidir
flat_mask2_660 = '%sdc_mN20011224S127_norm_flat.fits' % scidir
flat_mask2_670 = '%sdc_mN20011222S112_norm_flat.fits' % scidir

'''
#Run GSREDUCE on the arc frames, separated by different central wavelength files, and match the arc files with their respective proc_log and reference files (the reference files here are the stich & slitted flat frames that are paired to them (same mask and central wavelength). Should the x and y offsets have the same settings as the flat frames? <- There aren't any internal emisson lines to mask out in the arc. Inger's settings have different values for the different arc frames, so I may as well put them in.

#GSREDUCE calls GSAPPWAVE at the end so it's already done. GSREDUCE has options which include mosaic'ing and cutting; the mosaic'ing does so with interpolation on. This produces arc frames that are in MEF format and are transformed and have a prefix 't' to them

#### mask 1 ####
#central wavelength of 660nm:
arc_mask1_660 = [line.strip() for line in open('arc_mask1_660')]
for i in arc_mask1_660:
	current_arc = i
	iraf.gsreduce(inimages=rawdir+current_arc, fl_bias = 'no', fl_flat = 'no', mdfdir=proc_logs, refimage=flat_mask1_660)


#central wavelength of 670nm:  
arc_mask1_670 = [line.strip() for line in open('arc_mask1_670')]
for i in arc_mask1_670:
示例#5
0
iraf.gsreduce(inimages='@CuAr_b600_520_1.txt',
              flatim='b600_520_norm_flat_1.fits',
              fl_bias=no,
              fl_crspec=no)
iraf.gsreduce(inimages='@CuAr_b600_525_1.txt',
              flatim='b600_525_norm_flat_1.fits',
              fl_bias=no,
              fl_crspec=no)

#log?
l.write('reduced=yes')

#Wavelength calibrate ARCs in 2d

iraf.gswavelength(inimages='gs//@CuAr_b600_520_1.txt')
iraf.gswavelength(inimages='gs//@CuAr_b600_525_1.txt')

#log?
l.write('arcs=yes')

#Applying Wavelength Calibration to Science Images

iraf.gstransform(inimages='gs//@object_b600_520_1.txt',
                 wavtran='gs//@CuAr_b600_520_1.txt')
iraf.gstransform(inimages='gs//@object_b600_520_2.txt',
                 wavtran='gs//@CuAr_b600_520_1.txt')
iraf.gstransform(inimages='gs//@object_b600_520_3.txt',
                 wavtran='gs//@CuAr_b600_520_1.txt')

iraf.gstransform(inimages='gs//@object_b600_525_1.txt',
示例#6
0
    # Reduce the arc image
    iraf.gsreduce(rawdir + arc,
                  rawpath=rawdir,
                  bias=rawdir + bias,
                  fl_fixpix='yes',
                  flat='flat.fits',
                  fl_over='no')
    iraf.gsreduce(rawdir + arc_star,
                  rawpath=rawdir,
                  bias=rawdir + bias_star,
                  fl_fixpix='yes',
                  flat='flat_star.fits',
                  fl_over='no')

    # Fit wavelength solution
    iraf.gswavelength('gs' + arc, fl_inter='no')
    iraf.gswavelength('gs' + arc_star, fl_inter='no')

    # Reduce standard star
    iraf.gsreduce(rawdir + star,
                  rawpath=rawdir,
                  bias=rawdir + bias_star,
                  fl_fixpix='yes',
                  flat='flat_star.fits',
                  fl_over='no',
                  fl_gscrrej='yes',
                  fl_vardq='yes')
    iraf.gstransform('gs' + star,
                     wavtraname='gs' + arc_star.replace('.fits', ''))
    iraf.gsskysub('tgs' + star, long_sample='150:200')
    iraf.gsextract('stgs' + star)

# Reduce the arc frames
logger.info("Reducing arc frames..")
for filename in arc_filenames:
    reduce_arc_result = iraf.gsreduce("g{0}".format(filename), 
        fl_over=False, fl_trim=True, fl_bias=False, fl_dark=False, 
        fl_flat=False, fl_cut=True, fl_gsappwave=True, yoffset=5.0, Stdout=1)
    log_iraf_result(reduce_arc_result)

    logger.info("Running gswavelength..")
    #gswavelength_result = iraf.gswavelength("gsg{0}".format(filename),
    #    fl_inter="NO", nsum=5, step=5, function='chebyshev', order=6, 
    #    fitcxord=5, fitcyord=4, Stdout=1)
    gswavelength_result = iraf.gswavelength("gsg{0}".format(filename),
         fl_inter="NO", nsum=5, step=5, function="chebyshev", order="6",
         fitcxord=5, fitcyord=4, Stdout=1, niterate=10, low_reject=1.5,
         high_reject=1.5, fl_dbwrite="YES", fl_overwrite="yes")
    log_iraf_result(gswavelength_result)

    # Apply transformations
    logger.info("Applying wavelength transformations to arc..")
    gstransform_arc_result = iraf.gstransform("gsg{0}".format(filename),
        wavtraname="gsg{0}".format(filename), Stdout=1)
    log_iraf_result(gstransform_arc_result)


logger.info("Doing wavelength transformations, sky and extraction:")
for object_filename in object_filenames:
    logger.info("Working on filename {}".format(object_filename))
    logger.info("Applying wavelength transformations to object..")
示例#8
0
              fl_bias=no)
iraf.gsreduce(inimages='@object_b600_2.txt',
              flatim='b600_norm_flat_2.fits',
              fl_bias=no)
iraf.gsreduce(inimages='@CuAr_r400_2.txt',
              flatim='r400_norm_flat_2.fits',
              fl_bias=no)
iraf.gsreduce(inimages='@CuAr_b600_2.txt',
              flatim='b600_norm_flat_2.fits',
              fl_bias=no)

#log?
l.write('reduced=yes')

#Wavelength calibrate ARCs in 2d
iraf.gswavelength(inimages='gs//@CuAr_r400_1.txt')
iraf.gswavelength(inimages='gs//@CuAr_b600_1.txt')
iraf.gswavelength(inimages='gs//@CuAr_r400_2.txt')
iraf.gswavelength(inimages='gs//@CuAr_b600_2.txt')

#log?
l.write('arcs=yes')

#Applying Wavelength Calibration to Science Images
iraf.gstransform(inimages='gs//@object_r400_1.txt',
                 wavtran='gs//@CuAr_r400_1.txt')
iraf.gstransform(inimages='gs//@object_b600_1.txt',
                 wavtran='gs//@CuAr_b600_1.txt')
iraf.gstransform(inimages='gs//@object_b600_2.txt',
                 wavtran='gs//@CuAr_b600_2.txt')
iraf.gstransform(inimages='gs//@object_r400_2.txt',
示例#9
0
# ---------- Wavelength solution ---------- #

# Extract the arc
flatref = iraf.type(ic.lst_flat, Stdout=1)[0].strip()

iraf.imdelete('g@'+ic.lst_arc)
iraf.imdelete('rg@'+ic.lst_arc)
iraf.imdelete('erg@'+ic.lst_arc)

for arc in iraf.type(ic.lst_arc, Stdout=1):
	arc = arc.strip()
	iraf.gfreduce(arc, rawpath=ic.rawdir, fl_extract='yes', recenter='no',
	              trace='no', reference='erg'+flatref, fl_bias='no',
	              fl_over='yes', fl_trim='yes', mdffile=ic.nmdf, mdfdir='./',
	              slits='both', fl_fluxcal='no', fl_gscrrej='no',
	              fl_wavtran='no', fl_skysub='no', fl_inter='no')

iraf.sleep(10.0)

# ----- Measure the wavelength solution ----- #
for arc in iraf.type(ic.lst_arc, Stdout=1):
	arc = arc.strip()
	iraf.gswavelength('erg'+arc, fl_inter='yes',
	                  nlost=20, ntarget=15, threshold=25,
	                  coordlis='gmos$data/GCALcuar.dat')


# Printing the running time
print('--- %s seconds ---' %(time.time()-start_time))
示例#10
0
文件: run.py 项目: andycasey/mossy
    path = os.path.basename(arc["path"])

    iraf.unlearn("gireduce")
    iraf.unlearn("gsflat")
    iraf.unlearn("gemextn")

    iraf.gsreduce(path,
                  bias="master_bias.fits",
                  fl_fixpix=False,
                  fl_flat=False,
                  fl_oversize=False)

    # Do wavelength calibration on arc frames.
    iraf.unlearn("gswavelength")
    iraf.gswavelength("gs{}".format(path), **gswavelength_kwds)

# Reduce all science frames.
science_frames = association[(association["obsclass"] == "science") \
    + ((association["obstype"] == "OBJECT") * (association["obsclass"] == "partnerCal"))]

# Load template spectrum.
template_disp, template_flux, _ = np.loadtxt("Atlas.Arcturus.372_926nm.txt",
                                             skiprows=1).T
template_disp *= 10.0

for frame in science_frames:

    path = os.path.basename(frame["path"])

    iraf.unlearn("gireduce")
示例#11
0
def reduce_stdstar(rawdir, rundir, caldir, starobj, stdstar, flat,
    arc, twilight, starimg, bias, overscan, vardq):
    """
    Reduction pipeline for standard star.

    Parameters
    ----------
    rawdir: string
        Directory containing raw images.
    rundi: string
        Directory where processed files are saved.
    caldir: string
        Directory containing standard star calibration files.
    starobj: string
        Object keyword for the star image.
    stdstar: string
        Star name in calibration file.
    flat: list
        Names of the files containing flat field images.
    arc: list
        Arc images.
    twilight: list
        Twilight flat images.
    starimg: string
        Name of the file containing the image to be reduced.
    bias: list
        Bias images.
    
    """

    iraf.set(stdimage='imtgmos')
    
    iraf.gemini()
    iraf.gemtools()
    iraf.gmos()
    
    #iraf.unlearn('gemini')
    #iraf.unlearn('gmos')
    
    iraf.task(lacos_spec='/storage/work/gemini_pairs/lacos_spec.cl')
    
    tstart = time.time()
    
    #set directories
    iraf.set(caldir=rawdir)  # 
    iraf.set(rawdir=rawdir)  # raw files
    iraf.set(procdir=rundir)  # processed files
    
    iraf.gmos.logfile='logfile.log'
    
    iraf.cd('procdir')
    
    # building lists
    
    def range_string(l):
        return (len(l)*'{:4s},').format(*[i[-9:-5] for i in l])
    
    iraf.gemlist(range=range_string(flat), root=flat[0][:-9],
        Stdout='flat.list')
    iraf.gemlist(range=range_string(arc), root=arc[0][:-9],
        Stdout='arc.list')
    #iraf.gemlist(range=range_string(star), root=star[0][:-4],
    #    Stdout='star.list')
    iraf.gemlist(range=range_string(twilight),
        root=twilight[0][:-9], Stdout='twilight.list')
    
    iraf.gfreduce.bias = 'caldir$'+bias[0]
    
    #######################################################################
    #######################################################################
    ###   Star reduction                                                  #
    #######################################################################
    #######################################################################
    
    #
    #   Flat reduction
    #
    
    iraf.gfreduce(
        '@flat.list', slits='header', rawpath='rawdir$', fl_inter='no',
        fl_addmdf='yes', key_mdf='MDF', mdffile='default', weights='no',
        fl_over=overscan, fl_trim='yes', fl_bias='yes', trace='yes', t_order=4,
        fl_flux='no', fl_gscrrej='no', fl_extract='yes', fl_gsappwave='no',
        fl_wavtran='no', fl_novl='no', fl_skysub='no', reference='',
        recenter='yes', fl_vardq=vardq)
    
    iraf.gfreduce('@twilight.list', slits='header', rawpath='rawdir$',
        fl_inter='no', fl_addmdf='yes', key_mdf='MDF',
        mdffile='default', weights='no',
        fl_over=overscan, fl_trim='yes', fl_bias='yes', trace='yes',
        recenter='no',
        fl_flux='no', fl_gscrrej='no', fl_extract='yes', fl_gsappwave='no',
        fl_wavtran='no', fl_novl='no', fl_skysub='no',
        reference='erg'+flat[0], fl_vardq=vardq)
    #
    #   Response function
    #
    
    
    for i, j in enumerate(flat):

        j = j[:-5]
    
        iraf.imdelete(j+'_response')
        iraf.gfresponse('erg'+j+'.fits', out='erg'+j+'_response',
            skyimage='erg'+twilight[i], order=95, fl_inter='no',
            func='spline3',
            sample='*', verbose='yes')
    
    #   Arc reduction
    #
    
    iraf.gfreduce(
        '@arc.list', slits='header', rawpath='rawdir$', fl_inter='no',
        fl_addmdf='yes', key_mdf='MDF', mdffile='default', weights='no',
        fl_over=overscan, fl_trim='yes', fl_bias='yes', trace='no',
        recenter='no',
        fl_flux='no', fl_gscrrej='no', fl_extract='yes', fl_gsappwave='no',
        fl_wavtran='no', fl_novl='no', fl_skysub='no', reference='erg'+flat[0],
        fl_vardq=vardq)
    
    
    #   Finding wavelength solution
    #   Note: the automatic identification is very good
    #
    
    for i in arc:
        
        iraf.gswavelength('erg'+i, function='chebyshev', nsum=15, order=4,
            fl_inter='no', nlost=5, ntarget=20, aiddebug='s', threshold=5,
            section='middle line')
    
    #
    #   Apply wavelength solution to the lamp 2D spectra
    #
    
        iraf.gftransform('erg'+i, wavtran='erg'+i, outpref='t', fl_vardq=vardq)
    
    ##
    ##   Actually reduce star
    ##
    
    
    iraf.gfreduce(
        starimg, slits='header', rawpath='rawdir$', fl_inter='no',
        fl_addmdf='yes', key_mdf='MDF', mdffile='default', weights='no',
        fl_over=overscan, fl_trim='yes', fl_bias='yes', trace='no',
        recenter='no',
        fl_flux='no', fl_gscrrej='no', fl_extract='no', fl_gsappwave='no',
        fl_wavtran='no', fl_novl='yes', fl_skysub='no', fl_vardq=vardq)
    
    iraf.gemcrspec('rg{:s}'.format(starimg), out='lrg'+starimg, sigfrac=0.32, 
         niter=4, fl_vardq=vardq)
         
    iraf.gfreduce(
        'lrg'+starimg, slits='header', rawpath='./', fl_inter='no',
        fl_addmdf='no', key_mdf='MDF', mdffile='default',
        fl_over='no', fl_trim='no', fl_bias='no', trace='no',
        recenter='no',
        fl_flux='no', fl_gscrrej='no', fl_extract='yes',
        fl_gsappwave='yes',
        fl_wavtran='yes', fl_novl='no', fl_skysub='yes',
        reference='erg'+flat[0][:-5], weights='no',
        wavtraname='erg'+arc[0][:-5],
        response='erg'+flat[0][:-5]+'_response.fits',
        fl_vardq=vardq)
    #
    #   Apsumming the stellar spectra
    #
    iraf.gfapsum(
        'stexlrg'+starimg, fl_inter='no', lthreshold=400.,
        reject='avsigclip')
    #
    #   Building sensibility function
    #
    
    
    iraf.gsstandard(
        ('astexlrg{:s}').format(starimg), starname=stdstar,
        observatory='Gemini-South', sfile='std', sfunction='sens',
        caldir=caldir)
    #
    #   Apply flux calibration to galaxy
    #
    #
    ##iraf.imdelete('*****@*****.**')
    #
    ##iraf.gscalibrate('*****@*****.**',sfunction='sens.fits',fl_ext='yes',extinct='onedstds$ctioextinct.dat',observatory='Gemini-South',fluxsca=1)
    #
    ##
    ##   Create data cubes
    ##
    #
    #
    ##for i in objs:
    ##  iraf.imdelete('d0.1cstexlrg'+i+'.fits')
    ##  iraf.gfcube('cstexlrg'+i+'.fits',outpref='d0.1',ssample=0.1,fl_atmd='yes',fl_flux='yes')
    #
    ##
    ## Combine cubes
    ##
    #
    #
    ##iraf.imdelete('am2306-721r4_wcsoffsets.fits')
    ##iraf.imcombine('d0.1cstexlrgS20141113S00??.fits[1]',output='am2306-721r4_wcsoffsets.fits',combine='average',reject='sigclip',masktype='badvalue',lsigma=2,hsigma=2,offset='wcs',outlimits='2 67 2 48 100 1795')
    #
    
    tend = time.time()
    
    print('Elapsed time in reduction: {:.2f}'.format(tend - tstart))
示例#12
0
    iraf.gfreduce('@arc'+str(m)+'.list', slits='header', rawpath='rawdir$', fl_inter='no',
        fl_addmdf='yes', key_mdf='MDF', mdffile='default', weights='no',
        fl_over='yes', fl_trim='yes', fl_bias='no', trace='no', recenter='no',
        fl_flux='no', fl_gscrrej='no', fl_extract='yes', fl_gsappwave='no',
        fl_wavtran='no', fl_novl='no', fl_skysub='no', reference='erg'+flat[m][0],
        fl_vardq='no', bias='caldir$'+bias[m][0])

#
#   Finding wavelength solution
#   Note: the automatic identification is very good
#

for m in range(len(star)):
    for i in arc[m]:
        iraf.gswavelength('erg'+i, function='chebyshev', nsum=15, order=4,
            fl_inter='no', nlost=5, ntarget=20, aiddebug='s', threshold=5,
            section='middle line')

#
#   Apply wavelength solution to the lamp 2D spectra
#

for m in range(len(star)):
    for i in arc[m]:
        # (B) Fiz fl_vardq-, pois mudei acima tambem --------
        iraf.imdelete('terg'+i+'.fits')
        iraf.gftransform('erg'+i, wavtran='erg'+i, outpref='t', fl_vardq='no')

##
##   Actually reduce star
##