def test_concatenate(): assert_array_equal(c(1, np.zeros(3)), np.array([1.0, 0.0, 0.0, 0.0])) assert_array_equal(c([1], np.zeros(3)), np.array([1.0, 0.0, 0.0, 0.0])) assert_array_equal(c(1), np.ones(1)) assert c() is None assert_array_equal(c([1]), np.ones(1))
def test_approx_rule2(): # for rule = 2 x, y = approx(table, tablep, stat, rule=2) assert_array_almost_equal(x, c(1.01)) assert_array_almost_equal(y, c(0.01))
def test_regularize(): x, y = c(0.5, 0.5, 1.0, 1.5), c(1, 2, 3, 4) x, y = _regularize(x, y, 'mean') assert_array_almost_equal(x, np.array([0.5, 1.0, 1.5])) assert_array_almost_equal(y, np.array([1.5, 3.0, 4.0]))
def test_approx_rule1(): # for rule = 1 x, y = approx(table, tablep, stat, rule=1) assert_array_almost_equal(x, c(1.01)) assert_array_almost_equal(y, c(np.nan))
# Test the approximation function from __future__ import absolute_import from pyramid.arima.approx import approx, _regularize from pyramid.utils.array import c from pyramid.utils.testing import assert_raises from numpy.testing import assert_array_almost_equal import numpy as np table = c(0.216, 0.176, 0.146, 0.119) tablep = c(0.01, 0.025, 0.05, 0.10) stat = 1.01 def test_regularize(): x, y = c(0.5, 0.5, 1.0, 1.5), c(1, 2, 3, 4) x, y = _regularize(x, y, 'mean') assert_array_almost_equal(x, np.array([0.5, 1.0, 1.5])) assert_array_almost_equal(y, np.array([1.5, 3.0, 4.0])) def test_approx_rule1(): # for rule = 1 x, y = approx(table, tablep, stat, rule=1) assert_array_almost_equal(x, c(1.01)) assert_array_almost_equal(y, c(np.nan))