def test_optimization(): class ExampleOS(ClassWithOptimizableVariables): def __init__(self): super(ExampleOS, self).__init__() self.X = OptimizableVariable(name="X", variable_type="variable", value=3.0) self.Y = OptimizableVariable(name="Y", variable_type="variable", value=20.0) self.Z = OptimizableVariable(name="Z", variable_type="pickup", functionobject=(FunctionObject( "f = lambda x, y: x**2 + y**2", ["f"]), "f"), args=(self.X, self.Y)) def testmerit(s): # let x, y being on a circle of radius 5 return (s.X()**2 + s.Y()**2 - 5.**2)**2 def testmerit2(s): # let x**2 + y**2 + z**2 be minimized with # the pickup constraint z = x**2 + y**2 return s.X()**2 + s.Y()**2 + s.Z()**2 os = ExampleOS() optimi = Optimizer(os, testmerit, backend=ScipyBackend(method="Nelder-Mead", options={ "maxiter": 1000, "disp": False }, name="scipybackend"), name="optimizer") optimi.run() assert np.isclose(os.X()**2 + os.Y()**2, 25.0) optimi.meritfunction = testmerit2 optimi.run() assert np.isclose(os.X()**2 + os.Y()**2, os.Z()) optimi.backend = Newton1DBackend(dx=1e-6, iterations=500) optimi.meritfunction = testmerit optimi.run() assert np.isclose(os.X()**2 + os.Y()**2, 25.0) optimi.meritfunction = testmerit2 optimi.run() assert np.isclose(os.X()**2 + os.Y()**2, os.Z())
def test_optimization(): class ExampleOS(ClassWithOptimizableVariables): def __init__(self): super(ExampleOS, self).__init__() self.X = OptimizableVariable(name="X", variable_type="variable", value=3.0) self.Y = OptimizableVariable(name="Y", variable_type="variable", value=20.0) self.Z = OptimizableVariable( name="Z", variable_type="pickup", functionobject=( FunctionObject("f = lambda x, y: x**2 + y**2", ["f"]), "f"), args=(self.X, self.Y)) def testmerit(s): # let x, y being on a circle of radius 5 return (s.X()**2 + s.Y()**2 - 5.**2)**2 def testmerit2(s): # let x**2 + y**2 + z**2 be minimized with # the pickup constraint z = x**2 + y**2 return s.X()**2 + s.Y()**2 + s.Z()**2 os = ExampleOS() optimi = Optimizer(os, testmerit, backend=ScipyBackend(method="Nelder-Mead", options={"maxiter": 1000, "disp": False}, name="scipybackend"), name="optimizer") optimi.run() assert np.isclose(os.X()**2 + os.Y()**2, 25.0) optimi.meritfunction = testmerit2 optimi.run() assert np.isclose(os.X()**2 + os.Y()**2, os.Z()) optimi.backend = Newton1DBackend(dx=1e-6, iterations=500) optimi.meritfunction = testmerit optimi.run() assert np.isclose(os.X()**2 + os.Y()**2, 25.0) optimi.meritfunction = testmerit2 optimi.run() assert np.isclose(os.X()**2 + os.Y()**2, os.Z())
def test_optimization(): class ExampleOS(ClassWithOptimizableVariables): def __init__(self): super(ExampleOS, self).__init__() self.X = OptimizableVariable(name="X", status="Variable", value=3.0) self.Y = OptimizableVariable(name="Y", status="Variable", value=20.0) self.Z = OptimizableVariable(name="Z", status="Pickup", \ function=lambda x, y: x**2 + y**2, \ args=(self.X, self.Y)) def testmerit(s): # let x, y being on a circle of radius 5 return (s.X()**2 + s.Y()**2 - 5.**2)**2 def testmerit2(s): # let x**2 + y**2 + z**2 be minimized with the pickup constraint z = x**2 + y**2 return s.X()**2 + s.Y()**2 + s.Z()**2 os = ExampleOS() optimi = Optimizer(os, testmerit, backend=ScipyBackend(method='Nelder-Mead', options={'maxiter':1000, 'disp':False})) optimi.run() assert np.isclose(os.X()**2 + os.Y()**2, 25.0) optimi.meritfunction = testmerit2 optimi.run() assert np.isclose(os.X()**2 + os.Y()**2, os.Z()) optimi.backend = Newton1DBackend(dx=1e-6, iterations=500) optimi.meritfunction = testmerit optimi.run() assert np.isclose(os.X()**2 + os.Y()**2, 25.0) optimi.meritfunction = testmerit2 optimi.run() assert np.isclose(os.X()**2 + os.Y()**2, os.Z())
# optimize s.elements["stdelem"].surfaces["lens4front"].shape.curvature.to_variable() s.elements["stdelem"].surfaces["lens4rear"].shape.curvature.to_variable() s.elements["stdelem"].surfaces["lens4rear"].shape.curvature.\ to_pickup((FunctionObject("f = lambda x: -x"), "f"), (s.elements["stdelem"].surfaces["lens4front"].shape.curvature,)) listOptimizableVariables(s, max_line_width=80) optimi = Optimizer(s, meritfunction_step2, backend=ScipyBackend(), updatefunction=updatefunction_allsteps, name="step2") optimi.meritparameters["initialbundle"] = initialbundle_step1 s = optimi.run() # draw system with last lens biconvex s.draw2d(axarr[1], color="grey", vertices=50, plane_normal=pn, up=up) r2 = s.seqtrace(bundle_step1(nrays=9), seq) # trace again for r in r2: r.draw2d(axarr[1], color="blue", plane_normal=pn, up=up) # Step 3: colour, field, more variables ######################################## def bundles_step3(nrays=100, rpup=7.5, maxfield_deg=2.): """ Creates an array of collimated RayBundle objects for step 3.
meritfunctionrms, backend=opt_backend_1, updatefunction=osupdate) fi1.store_data(s) fi1.write_to_file() # ----- start optimizing opt_backend_1.update_PSB(optimi_1) stochagrad_1 = get_stochastic_grad(optimi_1, initialbundle, sample_param=sample_param) opt_backend_1.stochagrad = stochagrad_1 s1 = optimi_1.run() #plt.show() #******************************************************************************* ## V----------- plot the optimized system # ## --- plot the bundles and draw the system plotBundles(s, testbundle, sysseq, ax2, pn, up) ## # get a look at the vars ls = listOptimizableVariables(s, filter_status='variable', max_line_width=1000) plt.show() fi1.store_data(s)
def benchmark(OpticalSystem,meritfunctionrms,updatefunction,methods): """ methods: 2D-Liste der Form: methods = [[name,methodparam1,methodparam2,...],...] i.e. methods = [["Powell","penalty","penalty-lagrange"],["Nelder-Mead","penalty"]] Achtung: methods out of scipy need the " at the beginning and the end -> ["Powell","penalty",... ouer own methods doesnt need this -> e.g. [test_minimize_neldermead,"penalty",... meritfunction = meritfunction you want to use updatefunction = updatefunction you want to use For NlOpt you have to do: pip install nlopt --no-clean """ # All for Scipy-Methods:---------------------------------------------------- """ # Create a list with ProjectScipyBackend-Objects for all Methods: listOptBackend = [] for i in range(len(methods)): for j in range(len(methods[i])-1): listOptBackend.append(ProjectScipyBackend(optimize_func=methods[i][0], \ methodparam=methods[i][j+1], \ options={'maxiter':100, 'xatol':1e-10, \ 'fatol':1e-10, 'gtol':1e-10, \ 'disp':True})) # create a list to safe results: header = ["Verfahren", "Pen/Lag", "MeritFinal", "Time [s]", "fEval","Iter", "xFinal", "Bound ok?"] Result = [[] for i in range(len(listOptBackend)+1)] Result[0].append(header) for i in range(len(listOptBackend)): Result[i+1].append(listOptBackend[i].optimize_func) if (listOptBackend[i].methodparam == "standard"): Result[i+1].append("None") elif (listOptBackend[i].methodparam == "penalty"): Result[i+1].append("Penalty") elif (listOptBackend[i].methodparam == "penalty-lagrange"): Result[i+1].append("Pen + Lag") elif (listOptBackend[i].methodparam == "log"): Result[i+1].append("Barrier-Met.") # loop over all methods: counter1 = 1 for backend in listOptBackend: OS = deepcopy(OpticalSystem) # copy of OS for every method optimi = Optimizer(OS, meritfunctionrms, backend=backend, updatefunction=updatefunction) # Update constraints: backend.update_PSB(optimi) # is done in upadate_PSB """ # Update parameter "bounds": # needed for scipy-algos: "L-BFGS-B","TNC","SLSQP","trust-constr" lb = np.empty([len(backend.bdry)/2]) ub = np.empty([len(backend.bdry)/2]) for i in range (len(backend.bdry)/2): lb[i] = backend.bdry[2*i] ub[i] = backend.bdry[2*i+1] bound = scipy.optimize.Bounds(lb,ub) backend.kwargs['bounds'] = bound """ bdry = backend.kwargs['bounds'] # Update Jacobi-Matrix for case methodparam == 1: # (the other cases are treated in "project_minimize_backends") def jacobian(x): h = np.sqrt(np.finfo(float).eps) func = optimi.MeritFunctionWrapper grad = np.empty([len(x)]) E = np.eye(len(x)) for i in range (len(x)): grad[i] = (func(x+h*E[i,:])-func(x-h*E[i,:])) / (2*h) return grad #backend.kwargs['jac'] = jacobian """ # Functions for jacobian and hessian for scipy.minimize function: def jacobian(x): eps = np.sqrt(np.finfo(float).eps) func=optimi.MeritFunctionWrapper grad = np.ones(len(x)) for i in range(len(x)): x_neu1 = deepcopy(x) x_neu2 = deepcopy(x) x_neu1[i] = x_neu1[i] + eps x_neu2[i] = x_neu2[i] - eps grad[i] = (func(x_neu1)-func(x_neu2))/(2*eps) return grad def hessian(x): eps = np.sqrt(np.finfo(float).eps) func = optimi.MeritFunctionWrapper hes = np.ones((len(x),len(x))) for i in range(len(x)): for j in range(len(x)): x_neu1 = deepcopy(x) x_neu2 = deepcopy(x) x_neu3 = deepcopy(x) x_neu1[i] += eps x_neu1[j] += eps x_neu2[i] += eps x_neu3[j] += eps hes[i,j] = (func(x_neu1)-func(x_neu2)-func(x_neu3)+func(x)) / eps**2 return hes #temp = {"jac": jacobian, "hess": hessian} # add to options of backend #met.options.update(temp) """ # start optimization run and messure the time: start = time.time() OS = optimi.run() ende = time.time() # save results in list "Result": Result[counter1].append(backend.res.fun) # save final merit Result[counter1].append(ende-start) # save time Result[counter1].append(optimi.NoC) # number of calls of merit func if (backend.methodparam == "standard"): # number Iterations Result[counter1].append(backend.res.nit) # actual i do not know the nit by penalty and lagrange -> set to -1 else: Result[counter1].append(-1) Result[counter1].append(backend.res.x) # final x-value # check if xfinal fulfills boundaries: check = 0 for k in range (len(backend.res.x)): if (backend.res.x[k] >= bdry.lb[k] and backend.res.x[k] <= bdry.ub[k]): check += 0 else: check += 1 if (check >= 1): Result[counter1].append("no") else: Result[counter1].append("yes") # Increment counter counter1 += 1 # print Result: print("====================================================================================================================================================") print("Benchmark:") print("Bei den penalty-Methoden kenne ich die Gesamte Iterationszahl nicht -> hier ist iter aktuell auf -1") print("") #print header print("%60s %10s %10s %10s %10s %10s %10s %10s" % (header[0],header[1], \ header[2],header[3], \ header[4],header[5],header[6],header[7])) print(" -----------------------------------------------------------------------------------------------------------------------------------------------") for i in range(len(Result)-1): # print entries for every backend print("%60s %10s %10.5f %10.3f %10d %10d %10.3f %10s\n" % (Result[i+1][0],Result[i+1][1],Result[i+1][2],Result[i+1][3],Result[i+1][4],Result[i+1][5], \ Result[i+1][6][0], \ Result[i+1][7])) # loop over all entries of res.x (without res.x[0], cause already printed above) for j in range(len(backend.res.x)-1): print("%126.3f\n" % Result[i+1][6][j+1]) print("====================================================================================================================================================")
""" initialbundle_local = RayBundle(x0=o, k0=k, Efield0=E0, wave=wavelength) rpaths = my_s.seqtrace(initialbundle_local, sysseq) # other constructions lead to fill up of initial bundle with intersection # values # for glassy asphere only one path necessary x = rpaths[0].raybundles[-1].x[-1, 0, :] y = rpaths[0].raybundles[-1].x[-1, 1, :] res = np.sum(x**2 + y**2) return res backsurf = s.elements["stdelem"].surfaces["back"] backsurf.shape.params["curv"].changetype("variable") backsurf.shape.params["cc"].changetype("variable") # A2 not variable backsurf.shape.params["A4"].changetype("variable") backsurf.shape.params["A6"].changetype("variable") opt_backend = ScipyBackend(method='Nelder-Mead', tol=1e-9) optimi = Optimizer(s, meritfunctionrms, opt_backend, name="Nelder-Mead Optimizer") s = optimi.run() r2 = s.seqtrace(initialbundle, sysseq) draw(s, r2)