示例#1
0
            covmats[i_matrix, i_channel] = np.nan
            covmats[i_matrix, :, i_channel] = np.nan
            all_corrup_channels.append(i_channel)
        all_n_corrup_channels[i_matrix] = n_corrupt_channels
    return covmats, all_n_corrup_channels, all_corrup_channels


###############################################################################
# Generate data
# -------------

rs = np.random.RandomState(42)
n_matrices, n_channels = 100, 10
covmats = make_covariances(n_matrices,
                           n_channels,
                           rs,
                           evals_mean=100.,
                           evals_std=20.)

# Compute the reference, the Riemannian mean on all covariance matrices
C_ref = mean_riemann(covmats)

# Corrupt data randomly
n_corrup_channels_max = n_channels // 2
print("Maximum number of corrupted channels: {} over {}".format(
    n_corrup_channels_max, n_channels))

covmats, all_n_corrup_channels, all_corrup_channels = corrupt(
    covmats, n_corrup_channels_max, rs)

fig, ax = plt.subplots(nrows=1, ncols=1)
示例#2
0
 def _gen_cov_params(n_matrices, n_channels):
     return make_covariances(n_matrices,
                             n_channels,
                             rndstate,
                             return_params=True)
示例#3
0
    "MeanField",
]
classifiers = [
    MDM(),
    KNearestNeighbor(n_neighbors=3),
    SVC(probability=True),
    MeanField(power_list=[-1, -0.25, 0, 0.25, 1]),
]
n_classifs = len(classifiers)

rs = np.random.RandomState(2022)
n_matrices, n_channels = 50, 2
y = np.concatenate([np.zeros(n_matrices), np.ones(n_matrices)])

datasets = [(np.concatenate([
    make_covariances(n_matrices, n_channels, rs, evals_mean=10, evals_std=1),
    make_covariances(n_matrices, n_channels, rs, evals_mean=15, evals_std=1)
]), y),
            (np.concatenate([
                make_covariances(n_matrices,
                                 n_channels,
                                 rs,
                                 evals_mean=10,
                                 evals_std=2),
                make_covariances(n_matrices,
                                 n_channels,
                                 rs,
                                 evals_mean=12,
                                 evals_std=2)
            ]), y),
            make_gaussian_blobs(2 * n_matrices,
示例#4
0
 def _gen_cov_params(n_trials, n_chan):
     return make_covariances(n_trials, n_chan, rndstate, return_params=True)