def test_ERPcovariances(): """Test fit ERPCovariances""" x = np.random.randn(10, 3, 100) labels = np.array([0, 1]).repeat(5) cov = ERPCovariances() cov.fit_transform(x, labels) cov = ERPCovariances(classes=[0]) cov.fit_transform(x, labels) # assert raise svd assert_raises(TypeError, ERPCovariances, svd='42') cov = ERPCovariances(svd=1) assert_equal(cov.get_params(), dict(classes=None, estimator='scm', svd=1))
def test_erp_covariances(estimator, svd, rndstate, get_labels): """Test fit ERPCovariances""" n_classes, n_matrices, n_channels, n_times = 2, 4, 3, 100 x = rndstate.randn(n_matrices, n_channels, n_times) labels = get_labels(n_matrices, n_classes) cov = ERPCovariances(estimator=estimator, svd=svd) covmats = cov.fit_transform(x, labels) if svd is None: covsize = (n_classes + 1) * n_channels else: covsize = n_classes * svd + n_channels assert cov.get_params() == dict(classes=None, estimator=estimator, svd=svd) assert covmats.shape == (n_matrices, covsize, covsize) assert is_spsd(covmats)