def test_permutation_mode(mode, get_covmats, get_labels): """Test one way permutation test""" n_matrices, n_channels, n_classes = 6, 3, 2 covmats = get_covmats(n_matrices, n_channels) labels = get_labels(n_matrices, n_classes) p = PermutationDistance(100, mode=mode) p.test(covmats, labels)
def test_permutation_pairwise_plot(get_covmats, get_labels): """Test one way permutation with estimator""" n_matrices, n_channels, n_classes = 6, 3, 2 covmats = get_covmats(n_matrices, n_channels) labels = get_labels(n_matrices, n_classes) p = PermutationDistance(100, mode="pairwise") p.test(covmats, labels) p.plot(nbins=2)
def test_permutation_pairwise_unique(get_covmats, get_labels): """Test one way permutation with estimator""" n_matrices, n_channels, n_classes = 6, 3, 2 covmats = get_covmats(n_matrices, n_channels) labels = get_labels(n_matrices, n_classes) # unique perms p = PermutationDistance(1000) p.test(covmats, labels)
def test_permutation_pairwise_estimator(get_covmats, get_labels): """Test one way permutation with estimator""" n_matrices, n_channels, n_classes = 6, 3, 2 covmats = get_covmats(n_matrices, n_channels) labels = get_labels(n_matrices, n_classes) # with custom estimator p = PermutationDistance(10, mode="pairwise", estimator=CSP(2, log=False)) p.test(covmats, labels)
def test_permutation_pairwise(get_covmats, get_labels): """Test one way permutation pairwise test""" n_matrices, n_channels, n_classes = 6, 3, 2 covmats = get_covmats(n_matrices, n_channels) labels = get_labels(n_matrices, n_classes) groups = np.array([0] * 3 + [1] * 3) # pairwise p = PermutationDistance(100, mode="pairwise") p.test(covmats, labels) # with group p.test(covmats, labels, groups=groups)
def test_permutation_distance(): """Test one way permutation test""" covset = generate_cov(10, 5) labels = np.array([0, 1]).repeat(5) assert_raises(ValueError, PermutationDistance, mode='badmode') # pairwise p = PermutationDistance(100, mode='pairwise') p.test(covset, labels) # t-test p = PermutationDistance(100, mode='ttest') p.test(covset, labels) # f-test p = PermutationDistance(100, mode='ftest') p.test(covset, labels) # with custom estimator p = PermutationDistance(10, mode='pairwise', estimator=CSP(2, log=False)) p.test(covset, labels) # unique perms p = PermutationDistance(1000) p.test(covset, labels) p.plot(nbins=2)
Fs = 160 window = 2*Fs Nwindow = 20 Ns = epochs_data.shape[2] step = int((Ns-window)/Nwindow) time_bins = range(0, Ns-window, step) pv = [] Fv = [] # For each frequency bin, estimate the stats t_init = time() for t in time_bins: covmats = covest.fit_transform(epochs_data[:, ::1, t:(t+window)]) p_test = PermutationDistance(1000, metric='riemann', mode='pairwise') p, F = p_test.test(covmats, labels, verbose=False) pv.append(p) Fv.append(F[0]) duration = time() - t_init # plot result fig, axes = plt.subplots(1, 1, figsize=[6, 3], sharey=True) sig = 0.05 times = np.array(time_bins)/float(Fs) + tmin axes.plot(times, Fv, lw=2, c='k') plt.xlabel('Time (sec)') plt.ylabel('Score') a = np.where(np.diff(np.array(pv) < sig))[0] a = a.reshape(int(len(a)/2), 2) st = (times[1] - times[0])/2.0
labels = epochs.events[:, -1] - 2 # get epochs epochs_data = epochs.get_data() # compute covariance matrices covmats = Covariances().fit_transform(epochs_data) n_perms = 500 ############################################################################### # Pairwise distance based permutation test ############################################################################### t_init = time() p_test = PermutationDistance(n_perms, metric='riemann', mode='pairwise') p, F = p_test.test(covmats, labels) duration = time() - t_init fig, axes = plt.subplots(1, 1, figsize=[6, 3], sharey=True) p_test.plot(nbins=10, axes=axes) plt.title('Pairwise distance - %.2f sec.' % duration) print('p-value: %.3f' % p) sns.despine() plt.tight_layout() plt.show() ############################################################################### # t-test distance based permutation test ############################################################################### t_init = time()
fs=160.0) covmats = cosp.fit_transform(epochs_data[:, ::4, :]) fr = np.fft.fftfreq(128)[0:64]*160 fr = fr[(fr >= fmin) & (fr <= fmax)] ############################################################################### # Pairwise distance based permutation test ############################################################################### pv = [] Fv = [] # For each frequency bin, estimate the stats t_init = time() for i in range(covmats.shape[3]): p_test = PermutationDistance(1000, metric='riemann', mode='pairwise') p, F = p_test.test(covmats[:, :, :, i], labels, verbose=False) pv.append(p) Fv.append(F[0]) duration = time() - t_init # plot result fig, axes = plt.subplots(1, 1, figsize=[6, 3], sharey=True) sig = 0.05 axes.plot(fr, Fv, lw=2, c='k') plt.xlabel('Frequency (Hz)') plt.ylabel('Score') a = np.where(np.diff(np.array(pv) < sig))[0] a = a.reshape(int(len(a)/2), 2) st = (fr[1]-fr[0])/2.0 for p in a:
Fs = 160 window = 2 * Fs Nwindow = 20 Ns = epochs_data.shape[2] step = int((Ns - window) / Nwindow) time_bins = range(0, Ns - window, step) pv = [] Fv = [] # For each frequency bin, estimate the stats t_init = time() for t in time_bins: covmats = covest.fit_transform(epochs_data[:, ::1, t:(t + window)]) p_test = PermutationDistance(1000, metric='riemann', mode='pairwise') p, F = p_test.test(covmats, labels, verbose=False) pv.append(p) Fv.append(F[0]) duration = time() - t_init # plot result fig, axes = plt.subplots(1, 1, figsize=[6, 3], sharey=True) sig = 0.05 times = np.array(time_bins) / float(Fs) + tmin axes.plot(times, Fv, lw=2, c='k') plt.xlabel('Time (sec)') plt.ylabel('Score') a = np.where(np.diff(np.array(pv) < sig))[0] a = a.reshape(int(len(a) / 2), 2) st = (times[1] - times[0]) / 2.0