def test_permutation2way_test(): """Test two way permutation test""" covset = generate_cov(40, 2) labels = np.array([0, 1]).repeat(20) labels2 = np.array([4, 5, 2, 3]).repeat(10) p = PermutationTestTwoWay(200) p.test(covset, labels2, labels) p.summary()
def test_permutation2way_test(): """Test two way permutation test""" covset = generate_cov(40,2) labels = np.array([0,1]).repeat(20) labels2 = np.array([4,5,2,3]).repeat(10) p = PermutationTestTwoWay(200) p.test(covset,labels2,labels) p.summary() #p.plot(nbins=2)
def test_permutation2way_test(): """Test two way permutation test""" covset = generate_cov(40, 3) labels = np.array([0, 1]).repeat(20) labels2 = np.array([0, 1, 2, 3]).repeat(10) p = PermutationTestTwoWay(200) p.test(covset, labels2, labels) p.plot(nbins=10) p.summary() p.test(covset, labels2, labels, names=['a', 'b']) p.summary()
for f in eegbci.load_data(subject, runs)] raw = concatenate_raws(raw_files) # Apply band-pass filter raw.filter(7., 35., method='iir') events = find_events(raw, shortest_event=0, stim_channel='STI 014') picks = pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False, exclude='bads') # Read epochs (train will be done only between 1 and 2s) # Testing will be done with a running classifier epochs = Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=None, preload=True, add_eeg_ref=False, verbose=False) labels = epochs.events[:, -1] - 2 # get epochs epochs_data = epochs.get_data() # compute covariance matrices covmats = Covariances().fit_transform(epochs_data) session = np.array([1, 2, 3]).repeat(15) p_test = PermutationTestTwoWay(5000) p, F = p_test.test(covmats, session, labels, ['session', 'handsVsFeets']) p_test.plot() print(p_test.summary()) plt.show()
# Apply band-pass filter raw.filter(7., 35., method='iir') events = find_events(raw, shortest_event=0, stim_channel='STI 014') picks = pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False, exclude='bads') # Read epochs (train will be done only between 1 and 2s) # Testing will be done with a running classifier epochs = Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=None, preload=True, add_eeg_ref=False,verbose=False) labels = epochs.events[:, -1] - 2 # get epochs epochs_data = epochs.get_data() # compute covariance matrices covmats = Covariances().fit_transform(epochs_data) session = np.array([1,2,3]).repeat(15) p_test = PermutationTestTwoWay(5000) p,F = p_test.test(covmats,session,labels,['session','handsVsFeets']) p_test.plot() print p_test.summary() plt.show()