#========================================================================================= here = utils.get_here(__file__) parent = utils.get_parent(here) dopath = join(parent, 'examples') modelspath = join(parent, 'examples', 'models') analysispath = join(parent, 'examples', 'analysis') paperpath = join(parent, 'paper') timespath = join(paperpath, 'times') paperdatapath = join(paperpath, 'work', 'data') paperfigspath = join(paperpath, 'work', 'figs') # Make paths for path in [timespath, paperdatapath, paperfigspath]: utils.mkdir_p(path) def call(s): if simulate: print(3*' ' + s) else: rval = subprocess.call(s.split()) if rval != 0: sys.stdout.flush() print("Something went wrong (return code {}).".format(rval)) sys.exit(1) def train(model, seed=None, main=False): if seed is None: extra = '' else:
name = os.path.splitext(os.path.basename(modelfile))[0] + suffix # Scratch scratchpath = os.environ.get('SCRATCH') if scratchpath is None: scratchpath = os.path.join(os.environ['USERPROFILE'], 'scratch') trialspath = os.path.join(scratchpath, 'work', 'pyrl', prefix, name) # Paths workpath = os.path.join(here, 'work') datapath = os.path.join(workpath, 'data', name) figspath = os.path.join(workpath, 'figs', name) # Create necessary directories for path in [datapath, figspath, trialspath]: utils.mkdir_p(path) # File to store model in savefile = os.path.join(datapath, name + '.pkl') #========================================================================================= # Info #========================================================================================= if action == 'info': # Model specification model = Model(modelfile) # Create a PolicyGradient instance pg = model.get_pg(savefile, seed)