示例#1
0
async def run():
    """
    The main coroutine, which is started below.
    """

    # File with the yaml file
    robot_file_path = "../test/centipede.yaml"

    # Parse command line / file input arguments
    settings = parser.parse_args()

    # Load interface with factory: gets the factory services and the available modules
    factory_info = FactoryInfo()

    # Load the robot from yaml
    robot = rmevo_bot.RMEvoBot(self_factory=factory_info)
    logger.info("Loading Robot.")
    robot.load_file(robot_file_path)

    # Parse the robot back to yaml
    # This means the core has imported correctly the robot structure
    robot_yaml = robot.to_yaml()

    # Calls the service and passes the robot yaml
    factory_info.send_robot_to_factory('basic_test_robot', robot_yaml)
示例#2
0
 def export_snapshots(self, individuals, gen_num):
     if self.settings.recovery_enabled:
         path = os.path.join(self.experiment_folder,
                             f'selectedpop_{gen_num}')
         if os.path.exists(path):
             shutil.rmtree(path)
         os.mkdir(path)
         for ind in individuals:
             self.export_phenotype_images(f'selectedpop_{str(gen_num)}',
                                          ind)
         logger.info(
             f'Exported snapshot {str(gen_num)} with {str(len(individuals))} individuals'
         )
示例#3
0
def standard_crossover(parent_individuals, genotype_conf, crossover_conf):
    """
    Creates an child (individual) through crossover with two parents.

    :param parent_genotypes: genotypes of the parents to be used for crossover
    :return: genotype result of the crossover
    """
    parent_genotypes = [p.genotype for p in parent_individuals]
    new_genotype = generate_child_genotype(parent_genotypes, genotype_conf,
                                           crossover_conf)
    logger.info(
        f'crossover: for genome {new_genotype.id} - p1: {parent_genotypes[0].id} p2: {parent_genotypes[1].id}.'
    )
    return new_genotype
示例#4
0
 def get_gazebo_services(self):
     """
     Finds and creates ServiceProxys for the services needed, advertised by the
     :ros:pkg:`rmevo_gazebo`.
     """
     # Try to find the services from gazebo (has to be running)
     try:
         logger.info("Looking for gazebo services.")
         self.reset_service = rospy.ServiceProxy('/gazebo/reset_simulation',
                                                 Empty)
         self.fitness_service = rospy.ServiceProxy(
             '/worldcontrol/evaluate_fitness', FitnessEvaluation)
         self.delete_model_service = rospy.ServiceProxy(
             '/gazebo/delete_model', DeleteModel)
     except:
         raise RuntimeError(
             "Service not found, check if factory is running.")
示例#5
0
 def get_factory_services(self):
     """
     Find the services that the :ros:pkg:`factory_ros` advertises.
     
     Store the ROS proxies used to
     call this services later in the program.
     """
     # Try to find the service from the factory (has to be running)
     try:
         logger.info("Looking for factory services.")
         self.generate_service = rospy.ServiceProxy(
             '/factory/generate_robot', RobotConfiguration)
         self.list_modules_services = rospy.ServiceProxy(
             'factory/list_modules', OutputString)
     except:
         raise RuntimeError(
             "Service not found, check if factory is running.")
示例#6
0
    def delete_robot(self, robot_name):
        """
        Deletes the robot with the given name of the simulation,
        calling a :ros:pkg:`rmevo_gazebo` service.

        :param robot_name: Name of the robot to be deleted
        :type robot_name: String
        """
        serv_res = self.delete_model_service(robot_name)

        if serv_res.success is True:
            logger.info("Robot with name " + robot_name +
                        " deleted sucessfully.")
            return True
        else:
            logger.error("An error occurred while deleting the model: " +
                         serv_res.status_message)
            return 0
示例#7
0
    def evaluate_robot_fitness(self, robot_name):
        """
        Calls the :ros:pkg:`rmevo_gazebo` service that evaluates the fitness of the given robot.

        :param robot_name: Name of the robot to be evaluated
        :type robot_name: String
        :return: Fitness value of the robot evaluated
        """
        logger.info("Asking for fitness of robot " + robot_name)
        serv_res = self.fitness_service(robot_name)
        if serv_res.success is True:
            logger.info("Fitness of robot " + robot_name + " is " +
                        str(serv_res.robot_fitness))
            return serv_res.robot_fitness
        else:
            logger.error("An error occurred while asking for the fitness: " +
                         serv_res.status_message)
            return 0
示例#8
0
    def send_robot_to_factory(self, name, robot):
        """
        Calls the service :func:`/factory_ros/generate_robot()`
        using the proxy obtained by :meth:`get_factory_services()`.

        Through this service this method sends a robot and its morphological configuration
        to the factory and commands it to spawn it in Gazebo.

        :param name: Name of the robot. Used as ID in the program.
        :type name: String
        :param robot: String with yaml format that contains the genotype of the robot,
                        represented as a tree structure with the modules as nodes.
        :type robot: String
        """
        logger.info("Spawning robot " + name)
        serv_res = self.generate_service(name, robot)
        if serv_res.success is True:
            logger.info("Robot spawned correctly")
        else:
            logger.error("Error spawning robot")
示例#9
0
async def run():
    """
    The main coroutine, which is started below.
    """

    # Load interface with factory: gets the factory services and the available modules
    factory_manager = FactoryManager()

    # Load interface with gazebo: gets services
    gazebo_manager = GazeboManager()

    # experiment params #
    num_generations = 5
    population_size = 10
    offspring_size = 5

    genotype_conf = PlasticodingConfig(
        max_depth=2,
        factory=factory_manager,
        axiom_w='Core',
        empty_child_prob=0.5
    )

    mutation_conf = MutationConfig(
        mutation_prob=0.8,
        genotype_conf=genotype_conf,
    )

    crossover_conf = CrossoverConfig(
        crossover_prob=0.8,
    )

    fitness_conf = fitness.FitnessManager(
        gazebo_manager=gazebo_manager,
        factory_manager=factory_manager
    )
    # experiment params #

    # Parse command line / file input arguments
    settings = parser.parse_args()
    settings.experiment_name = "Test2"
    settings.evaluation_time = 1

    experiment_management = ExperimentManagement(settings)
    # do_recovery = settings.recovery_enabled and not experiment_management.experiment_is_new()

    # logger.info('Activated run '+settings.run+' of experiment '+settings.experiment_name)

    # if do_recovery:
    #     gen_num, has_offspring, next_robot_id = experiment_management.read_recovery_state(population_size, offspring_size)
    #
    #     if gen_num == num_generations-1:
    #         logger.info('Experiment is already complete.')
    #         return
    # else:
    gen_num = 0
    next_robot_id = 1

    population_conf = PopulationConfig(
        population_size=population_size,
        genotype_constructor=rmevo_random_initialization,
        #genotype_constructor=random_initialization,
        genotype_conf=genotype_conf,
        fitness_conf=fitness_conf,
        mutation_operator=null_mutation,
        mutation_conf=mutation_conf,
        crossover_operator=rmevo_crossovers.standard_crossover,
        # crossover_operator=None,
        crossover_conf=crossover_conf,
        selection=lambda individuals: tournament_selection(individuals, 2),
        parent_selection=lambda individuals: multiple_selection(individuals, 2, tournament_selection),
        population_management=steady_state_population_management,
        population_management_selector=tournament_selection,
        evaluation_time=settings.evaluation_time,
        offspring_size=offspring_size,
        experiment_name=settings.experiment_name,
        experiment_management=experiment_management,
    )

    settings.output_directory = 'file'
    settings.simulator_cmd = 'gazebo'
    settings.world = 'worlds/plane.realtime.world'

    population = Population(population_conf, next_robot_id)

    # starting a new experiment
    experiment_management.create_exp_folders()
    population.init_pop()

    while gen_num < num_generations-1:
        gen_num += 1
        population = population.next_gen(gen_num)

    # output result after completing all generations...
    fittest_robot = population.get_fittest_robot()
    logger.info("Evolution finished")
    logger.info("Fittest robot is " + fittest_robot.id + " with a fitness of " + str(fittest_robot.fitness))
    logger.info("Process finished")
示例#10
0
文件: test3.py 项目: aslab/rmevo
async def run():
    """
    The main coroutine, which is started below.
    """

    # Load modules from files
    logger.info("Starting Factory.")
    factory = rmevo_bot.Factory()
    logger.info("Importing module.")
    module_file_dir = 'rmevo/test/modules/basic'
    factory.import_modules_from_dir(module_file_dir)

    # experiment params #
    num_generations = 5
    population_size = 10
    offspring_size = 5

    genotype_conf = PlasticodingConfig(
        max_structural_modules=10,
        factory=factory,
        axiom_w='Core',
    )

    mutation_conf = MutationConfig(
        mutation_prob=0.8,
        genotype_conf=genotype_conf,
    )

    crossover_conf = CrossoverConfig(crossover_prob=0.8, )
    # experiment params #

    # Parse command line / file input arguments
    settings = parser.parse_args()
    settings.recovery_enabled = False
    settings.evaluation_time = 1

    experiment_management = ExperimentManagement(settings)
    do_recovery = settings.recovery_enabled and not experiment_management.experiment_is_new(
    )

    logger.info('Activated run ' + settings.run + ' of experiment ' +
                settings.experiment_name)

    if do_recovery:
        gen_num, has_offspring, next_robot_id = experiment_management.read_recovery_state(
            population_size, offspring_size)

        if gen_num == num_generations - 1:
            logger.info('Experiment is already complete.')
            return
    else:
        gen_num = 0
        next_robot_id = 1

    population_conf = PopulationConfig(
        population_size=population_size,
        genotype_constructor=rmevo_random_initialization,
        #genotype_constructor=random_initialization,
        genotype_conf=genotype_conf,
        fitness_function=fitness.maximum_weight,
        mutation_operator=standard_mutation,
        mutation_conf=mutation_conf,
        #crossover_operator=rmevo_crossovers.standard_crossover,
        crossover_operator=None,
        crossover_conf=crossover_conf,
        selection=lambda individuals: tournament_selection(individuals, 2),
        parent_selection=lambda individuals: multiple_selection(
            individuals, 2, tournament_selection),
        population_management=steady_state_population_management,
        population_management_selector=tournament_selection,
        evaluation_time=settings.evaluation_time,
        offspring_size=offspring_size,
        experiment_name=settings.experiment_name,
        experiment_management=experiment_management,
    )

    n_cores = settings.n_cores

    settings.output_directory = 'file'
    settings.simulator_cmd = 'gazebo'
    settings.world = 'worlds/plane.realtime.world'
    simulator_queue = SimulatorQueue(n_cores, settings, settings.port_start)
    await simulator_queue.start()

    analyzer_queue = AnalyzerQueue(1, settings, settings.port_start + n_cores)
    await analyzer_queue.start()

    population = Population(population_conf, simulator_queue, analyzer_queue,
                            next_robot_id)

    if do_recovery:
        # loading a previous state of the experiment
        await population.load_snapshot(gen_num)
        if gen_num >= 0:
            logger.info('Recovered snapshot ' + str(gen_num) + ', pop with ' +
                        str(len(population.individuals)) + ' individuals')
        if has_offspring:
            individuals = await population.load_offspring(
                gen_num, population_size, offspring_size, next_robot_id)
            gen_num += 1
            logger.info('Recovered unfinished offspring ' + str(gen_num))

            if gen_num == 0:
                await population.init_pop(individuals)
            else:
                population = await population.next_gen(gen_num, individuals)

            experiment_management.export_snapshots(population.individuals,
                                                   gen_num)
    else:
        # starting a new experiment
        experiment_management.create_exp_folders()
        await population.init_pop()
        experiment_management.export_snapshots(population.individuals, gen_num)

    while gen_num < num_generations - 1:
        gen_num += 1
        population = await population.next_gen(gen_num)
        experiment_management.export_snapshots(population.individuals, gen_num)
示例#11
0
        try:
            exc = context['exception']
        except KeyError:
            print(context['message'])
            return

        if isinstance(exc, ConnectionResetError):
            print("Got disconnect / connection reset - shutting down.")
            sys.exit(0)

        if isinstance(exc, OSError) and exc.errno == 9:
            print(exc)
            traceback.print_exc()
            return

        # traceback.print_exc()
        raise exc

    try:
        arguments = parser.parse_args()
        loop = asyncio.get_event_loop()
        loop.set_exception_handler(handler)
        RMEvoNode(loop, arguments)
    except KeyboardInterrupt:
        print("Got CtrlC, shutting down.")


if __name__ == '__main__':
    logger.info("Starting rmevo process")
    main()