def plot_outputNodes(self, log=False, cut_on_variable=None, plot_nonTrainData=False): ''' plot distribution in outputNodes ''' nbins = 20 bin_range = [0., 1.] plotNodes = plottingScripts.plotOutputNodes( data=self.data, prediction_vector=self.model_prediction_vector, event_classes=self.event_classes, nbins=nbins, bin_range=bin_range, signal_class="ttHbb", event_category=self.categoryLabel, plotdir=self.plot_path, logscale=log, plot_nonTrainData=plot_nonTrainData) if cut_on_variable: plotNodes.set_cutVariable(cutClass=cut_on_variable["class"], cutValue=cut_on_variable["value"]) plotNodes.set_printROCScore(True) plotNodes.plot(ratio=False)
def plot_outputNodes(self, log=False, printROC=False, signal_class=None, privateWork=False, nbins=30, bin_range=[0., 1.], sigScale=-1): ''' plot distribution in outputNodes ''' plotNodes = plottingScripts.plotOutputNodes( data=self.data, prediction_vector=self.model_prediction_vector, event_classes=self.event_classes, nbins=nbins, bin_range=bin_range, signal_class=signal_class, event_category=self.category_label, plotdir=self.plot_path, logscale=log, sigScale=sigScale) plotNodes.plot(ratio=False, printROC=printROC, privateWork=privateWork)