示例#1
0
def closure_plot(predict, estimate, nbins=1):

    # Glob the file lists
    bkg_list_wjets = [output_dirpath + "/wj_ht.root"]
    bkg_list_ttbar = [output_dirpath + "/tt_1l.root"]

    # Get all the histogram objects
    h_wjets_predict = ru.get_summed_histogram(bkg_list_wjets, predict)
    h_ttbar_predict = ru.get_summed_histogram(bkg_list_ttbar, predict)
    h_wjets_estimate = ru.get_summed_histogram(bkg_list_wjets, estimate)
    h_ttbar_estimate = ru.get_summed_histogram(bkg_list_ttbar, estimate)

    # Set the names of the histograms
    h_wjets_predict.SetTitle("W predict")
    h_ttbar_predict.SetTitle("Top predict")
    h_wjets_estimate.SetTitle("W estimate")
    h_ttbar_estimate.SetTitle("Top estimate")

    # Color settings
    colors = [
        2005,
        2001,
    ]

    # Options
    alloptions = {
        "ratio_range": [0.0, 2.0],
        "nbins":
        nbins,
        "autobin":
        False,
        "legend_scalex":
        1.8,
        "legend_scaley":
        1.1,
        "output_name":
        "plots/{}/{}/{}/closure/{}_nbins{}.pdf".format(
            input_ntup_tag, analysis_tag, "ss" if isSS else "3l",
            predict + "__" + estimate, nbins),
        "bkg_sort_method":
        "unsorted",
        "no_ratio":
        False,
        "print_yield":
        False,
        "yaxis_log":
        False,
        "legend_smart":
        True,
        "lumi_value":
        lumi,
        "legend_datalabel":
        "Estimate",
        "yield_prec":
        3,
        "print_yield":
        True,
    }

    # The bkg histogram list
    bgs_list = [h_ttbar_predict.Clone(), h_wjets_predict.Clone()]
    #bgs_list = [ h_ttbar_predict  ]

    h_estimate = h_wjets_estimate.Clone("Estimate")
    h_estimate.Add(h_ttbar_estimate)

    ll = ["Top Predict", "W Predict"]

    # Plot them
    p.plot_hist(bgs=bgs_list,
                data=h_estimate,
                colors=colors,
                syst=None,
                legend_labels=ll,
                options=alloptions)
示例#2
0
def write_datacards(ntuple_version, tag):

    # ntuple_version = args.sample_set_name
    # tag = args.tag

    if args.wwz_only:
        fname_sig = "outputs/{}/{}/wwz.root".format(ntuple_version, tag)
    else:
        fname_sig = "outputs/{}/{}/sig.root".format(ntuple_version, tag)
    fname_wwz = "outputs/{}/{}/wwz.root".format(ntuple_version, tag)
    fname_wzz = "outputs/{}/{}/wzz.root".format(ntuple_version, tag)
    fname_zzz = "outputs/{}/{}/zzz.root".format(ntuple_version, tag)
    fname_ttz = "outputs/{}/{}/ttz.root".format(ntuple_version, tag)
    fname_zz = "outputs/{}/{}/zz.root".format(ntuple_version, tag)
    fname_wz = "outputs/{}/{}/wz.root".format(ntuple_version, tag)
    fname_twz = "outputs/{}/{}/twz.root".format(ntuple_version, tag)
    fname_rare = "outputs/{}/{}/rare.root".format(ntuple_version, tag)
    fname_dyttbar = "outputs/{}/{}/dyttbar.root".format(ntuple_version, tag)
    fname_higgs = "outputs/{}/{}/higgs.root".format(ntuple_version, tag)
    fname_othernoh = "outputs/{}/{}/othernoh.root".format(ntuple_version, tag)
    fname_data = "outputs/{}/{}/data.root".format(ntuple_version, tag)

    year = "2" + ntuple_version.split("_")[0].split("2")[1]
    if "2016" in ntuple_version and "2017" in ntuple_version:
        year = "All"
    prefix = "{}/{}".format(ntuple_version, tag)

    procs = [
        "data_obs", "sig", "ttz", "zz", "wz", "twz", "rare", "dyttbar", "higgs"
    ]
    mcprocs = procs[1:]
    bkgprocs = procs[2:]
    fnames = [
        fname_data, fname_sig, fname_ttz, fname_zz, fname_wz, fname_twz,
        fname_rare, fname_dyttbar, fname_higgs
    ]
    nonzzbkg = [
        fname_sig, fname_ttz, fname_wz, fname_twz, fname_rare, fname_dyttbar,
        fname_higgs
    ]
    nonttzbkg = [
        fname_sig, fname_zz, fname_wz, fname_twz, fname_rare, fname_dyttbar,
        fname_higgs
    ]

    procs = ["data_obs", "sig", "ttz", "zz", "wz", "twz", "higgs", "other"]
    mcprocs = procs[1:]
    bkgprocs = procs[2:]
    fnames = [
        fname_data, fname_sig, fname_ttz, fname_zz, fname_wz, fname_twz,
        fname_higgs, fname_othernoh
    ]
    nonzzbkg = [
        fname_sig, fname_ttz, fname_wz, fname_twz, fname_higgs, fname_othernoh
    ]
    nonttzbkg = [
        fname_sig, fname_zz, fname_wz, fname_twz, fname_higgs, fname_othernoh
    ]

    if args.wwz_only:
        procs = [
            "data_obs", "sig", "wzz", "zzz", "zz", "ttz", "twz", "wz", "higgs",
            "other"
        ]
        mcprocs = procs[1:]
        bkgprocs = procs[2:]
        fnames = [
            fname_data, fname_wwz, fname_wzz, fname_zzz, fname_zz, fname_ttz,
            fname_twz, fname_wz, fname_higgs, fname_othernoh
        ]
        nonzzbkg = [
            fname_wwz, fname_wzz, fname_zzz, fname_ttz, fname_twz, fname_wz,
            fname_higgs, fname_othernoh
        ]
        nonttzbkg = [
            fname_wwz, fname_wzz, fname_zzz, fname_zz, fname_twz, fname_wz,
            fname_higgs, fname_othernoh
        ]

    systcategs = [
        "BTagHF", "BTagLF", "JES", "Pileup", "Qsq", "PDF", "AlphaS", "MET",
        "JER", "METPileup"
    ]  # Null string is the nominal variation
    systnames = ["Nominal"]  # Nominal always exist
    for systcateg in systcategs:
        systnames.append(systcateg + "Up")
        systnames.append(systcateg + "Down")

    #############
    # Open TFiles
    #############
    tfiles = {}
    for proc, fname in zip(procs, fnames):
        tfiles[proc] = r.TFile(fname)

    ###########################
    # OnZ Control region yields
    ###########################

    onz_zz_h = pr.get_summed_histogram([fname_zz], "ChannelOnZ__Yield")
    onz_data_h = pr.get_summed_histogram([fname_data], "ChannelOnZ__Yield")
    onz_nonzz_h = pr.get_summed_histogram(nonzzbkg, "ChannelOnZ__Yield")
    zz_sf = pr.get_sf(onz_zz_h, onz_data_h, onz_nonzz_h).GetBinContent(1)
    zz_sferr = pr.get_sf(onz_zz_h, onz_data_h, onz_nonzz_h).GetBinError(1)
    expected_nevt_zz = onz_data_h.GetBinContent(1)

    ############################
    # BTag Control region yields
    ############################

    bcr_ttz_h = pr.get_summed_histogram([fname_ttz], "ChannelBTagEMu__Yield")
    bcr_data_h = pr.get_summed_histogram([fname_data], "ChannelBTagEMu__Yield")
    bcr_nonttz_h = pr.get_summed_histogram(nonttzbkg, "ChannelBTagEMu__Yield")
    ttz_sf = pr.get_sf(bcr_ttz_h, bcr_data_h, bcr_nonttz_h).GetBinContent(1)
    ttz_sferr = pr.get_sf(bcr_ttz_h, bcr_data_h, bcr_nonttz_h).GetBinError(1)
    expected_nevt_ttz = bcr_data_h.GetBinContent(1)

    if not args.print_yields:
        print year, "ttz_sf", "{:.2f} +/- {:.2f}".format(
            ttz_sf, ttz_sferr), expected_nevt_ttz
        print year, "zz_sf", "{:.2f} +/- {:.2f}".format(
            zz_sf, zz_sferr), expected_nevt_zz

    ###############################
    # EMu channel data card writing
    ###############################

    # number of bins
    fitreg = "EMuHighMT"
    if args.emu_one_bin:
        nbins = 1
        fitvar = "Yield"
    else:
        nbins = 5
        fitvar = "MllNom"
        # nbins = 5
        # fitvar = "pt_zeta"

    # Main data base to hold all the histograms
    hists_db = {}

    # Loop over the processes
    for proc in procs:

        # Retrieve the tfile
        tfile = tfiles[proc]

        # For each processes create another map to hold various histograms
        hists_db[proc] = {}

        # Loop over the systematic variations
        for syst in systnames:

            if syst == "Nominal":
                if nbins == 5:
                    h = rebin36(
                        tfile.Get("Channel{}__{}".format(fitreg,
                                                         fitvar)).Clone())
                else:
                    h = tfile.Get("Channel{}__{}".format(fitreg,
                                                         fitvar)).Clone()
            else:
                systhacked = syst
                if proc == "NONE":
                    systhacked = ""
                if nbins == 5:
                    h = rebin36(
                        tfile.Get("Channel{}{}__{}".format(
                            fitreg, systhacked, fitvar)).Clone())
                else:
                    h = tfile.Get("Channel{}{}__{}".format(
                        fitreg, systhacked, fitvar)).Clone()
                # if nbins == 5:
                #     h = rebin36(tfile.Get("Channel{}{}__{}".format(fitreg, syst, fitvar)).Clone())
                # else:
                #     h = tfile.Get("Channel{}{}__{}".format(fitreg, syst, fitvar)).Clone()

            h.SetTitle("emu{}_{}".format(year, proc))

            if proc == "ttz":
                before_scale = h.Integral()
                h.Scale(ttz_sf)
                after_scale = h.Integral()
                if syst == "Nominal":
                    print year, "ttz", before_scale, after_scale
            if proc == "zz":
                before_scale = h.Integral()
                h.Scale(zz_sf)
                after_scale = h.Integral()
                if syst == "Nominal":
                    print year, "zz", before_scale, after_scale
            # if proc == "wz": h.Scale(2)

            hists_db[proc][syst] = h

    systs = []

    # ZZ CR systematic line
    onz_cr_hist = r.TH1F("onz_cr", "", nbins, 0, nbins)
    for i in xrange(1, nbins + 1):
        onz_cr_hist.SetBinContent(i, expected_nevt_zz)
    alpha = hists_db["zz"]["Nominal"].Clone("alpha")
    alpha.Divide(onz_cr_hist)
    thissyst = {}
    for proc in mcprocs:
        if proc == "zz":
            thissyst["emu{}_".format(year) + proc] = [
                "{:4f}".format(alpha.GetBinContent(i))
                for i in range(1, nbins + 1)
            ]
        else:
            thissyst["emu{}_".format(year) + proc] = 0
    systs.append(("CRZZ{}".format(year), "gmN", [onz_cr_hist], thissyst))

    # ttZ CR systematic line
    btag_cr_hist = r.TH1F("btag_cr", "", nbins, 0, nbins)
    for i in xrange(1, nbins + 1):
        btag_cr_hist.SetBinContent(i, expected_nevt_ttz)
    alpha = hists_db["ttz"]["Nominal"].Clone("alpha")
    alpha.Divide(btag_cr_hist)
    thissyst = {}
    for proc in mcprocs:
        if proc == "ttz":
            thissyst["emu{}_".format(year) + proc] = [
                "{:4f}".format(alpha.GetBinContent(i))
                for i in range(1, nbins + 1)
            ]
        else:
            thissyst["emu{}_".format(year) + proc] = 0
    systs.append(("CRTTZ{}".format(year), "gmN", [btag_cr_hist], thissyst))

    # Experimental systematics
    for systcateg in systcategs:
        thissyst = {}
        for proc in mcprocs:
            if proc not in ["zz", "ttz"]:
                thissyst["emu{}_".format(year) + proc] = [
                    hists_db[proc][systcateg + "Up"],
                    hists_db[proc][systcateg + "Down"]
                ]
            else:
                thissyst["emu{}_".format(year) + proc] = 0
        systs.append((systcateg + year, "lnN", [], thissyst))

    # # Flat additional systematics
    # thissyst = {}
    # for proc in mcprocs:
    #     if proc == "ttz": thissyst["emu{}_".format(year) + proc] = "1.11"
    #     else: thissyst["emu{}_".format(year) + proc] = 0
    # systs.append( ("FlatSystTFNbTTZ{}".format(year), "lnN", [], thissyst) )

    # # Flat additional systematics
    # thissyst = {}
    # for proc in mcprocs:
    #     if proc == "ttz": thissyst["emu{}_".format(year) + proc] = "1.02"
    #     else: thissyst["emu{}_".format(year) + proc] = 0
    # systs.append( ("FlatSystMTexpTTZ{}".format(year), "lnN", [], thissyst) )

    # Flat additional systematics
    thissyst = {}
    for proc in mcprocs:
        if proc == "ttz": thissyst["emu{}_".format(year) + proc] = "1.105594"
        else: thissyst["emu{}_".format(year) + proc] = 0
    systs.append(("FlatSystTFEMuTTZ{}".format(year), "lnN", [], thissyst))

    # Flat additional systematics
    thissyst = {}
    for proc in mcprocs:
        if proc == "zz": thissyst["emu{}_".format(year) + proc] = "1.049173"
        else: thissyst["emu{}_".format(year) + proc] = 0
    systs.append(("FlatSystTFEMuZZ{}".format(year), "lnN", [], thissyst))

    # # Flat additional systematics
    # thissyst = {}
    # for proc in mcprocs:
    #     if proc == "zz": thissyst["emu{}_".format(year) + proc] = "1.05"
    #     else: thissyst["emu{}_".format(year) + proc] = 0
    # systs.append( ("FlatSystMTexpZZ{}".format(year), "lnN", [], thissyst) )

    # Flat additional systematics
    thissyst = {}
    for proc in mcprocs:
        if proc == "wz":
            thissyst["emu{}_".format(year) + proc] = "1.6"  # Fake Syst
        else:
            thissyst["emu{}_".format(year) + proc] = 0
    systs.append(("FlatSystWZ{}".format(year), "lnN", [], thissyst))

    # Flat additional systematics
    thissyst = {}
    for proc in mcprocs:
        thissyst["emu{}_".format(year) + proc] = "1.025"
    systs.append(("FlatSystLumi{}".format(year), "lnN", [], thissyst))

    # Flat additional systematics
    thissyst = {}
    for proc in mcprocs:
        thissyst["emu{}_".format(year) + proc] = "1.03"
    systs.append(("FlatSystsIP3D{}".format(year), "lnN", [], thissyst))

    # Flat additional systematics
    thissyst = {}
    for proc in mcprocs:
        thissyst["emu{}_".format(year) + proc] = "1.02"
    systs.append(("FlatSystsTrigSF{}".format(year), "lnN", [], thissyst))

    # Now create data card writer
    sig = hists_db["sig"]["Nominal"]
    bgs = [hists_db[proc]["Nominal"] for proc in bkgprocs]
    data = hists_db["data_obs"]["Nominal"]
    d = dw.DataCardWriter(
        sig=sig,
        bgs=bgs,
        data=data,
        systs=systs,
        no_stat_procs=["emu{}_zz".format(year), "emu{}_ttz".format(year)])

    finalyields = []
    if nbins == 5:
        for i in xrange(1, nbins + 1):
            d.set_bin(i)
            d.set_region_name("bin{}".format(i))
            d.write("stats/{}/emu_datacard_bin{}.txt".format(prefix, i))
            if args.print_yields and args.wwz_only:
                vals = d.print_yields(detail=args.print_detail)
                if vals:
                    print_yield_table(vals[0], vals[1],
                                      "textable/emu{}{}".format(year, i))
                    finalyields.append(vals)
    elif nbins == 1:
        d.set_bin(1)
        d.set_region_name("bin{}".format(1))
        d.write("stats/{}/emu_datacard_singlebin{}.txt".format(prefix, 1))
        if args.print_yields and args.wwz_only:
            vals = d.print_yields(detail=args.print_detail)
            if vals:
                print_yield_table(vals[0], vals[1],
                                  "textable/emu{}".format(year))

    # colors = [2005, 2001, 2003, 2007, 920, 2012, 2011, 2002]
    # p.plot_hist(data=None, bgs=bgs, sigs=[sig], options={"bkg_sort_method":"ascending", "yaxis_range":[0.,2.5]}, colors=colors, sig_labels=["sig"], legend_labels=bkgprocs)

    ################################
    # OffZ channel data card writing
    ################################

    # number of bins
    nbins = 1

    # Main data base to hold all the histograms
    hists_db = {}

    # Loop over the processes
    for proc in procs:

        # Retrieve the tfile
        tfile = tfiles[proc]

        # For each processes create another map to hold various histograms
        hists_db[proc] = {}

        # Loop over the systematic variations
        for syst in systnames:

            if syst == "Nominal":
                h = tfile.Get("ChannelOffZHighMET__Yield").Clone()
            else:
                systhacked = syst
                if proc == "NONE":
                    systhacked = ""
                h = tfile.Get(
                    "ChannelOffZHighMET{}__Yield".format(systhacked)).Clone()
                # h = tfile.Get("ChannelOffZHighMET{}__Yield".format(syst)).Clone()

            h.SetTitle("offz{}_{}".format(year, proc))

            if proc == "ttz":
                before_scale = h.Integral()
                h.Scale(ttz_sf)
                after_scale = h.Integral()
                if syst == "Nominal":
                    print year, "ttz", before_scale, after_scale
            if proc == "zz":
                before_scale = h.Integral()
                h.Scale(zz_sf)
                after_scale = h.Integral()
                if syst == "Nominal":
                    print year, "zz", before_scale, after_scale
            # if proc == "wz": h.Scale(2)

            hists_db[proc][syst] = h

    systs = []

    # ZZ CR systematic line
    onz_cr_hist = r.TH1F("onz_cr", "", nbins, 0, nbins)
    for i in xrange(1, nbins + 1):
        onz_cr_hist.SetBinContent(i, expected_nevt_zz)
    alpha = hists_db["zz"]["Nominal"].Clone("alpha")
    alpha.Divide(onz_cr_hist)
    thissyst = {}
    for proc in mcprocs:
        if proc == "zz":
            thissyst["offz{}_".format(year) +
                     proc] = ["{:4f}".format(alpha.GetBinContent(1))]
        else:
            thissyst["offz{}_".format(year) + proc] = 0
    systs.append(("CRZZ{}".format(year), "gmN", [onz_cr_hist], thissyst))

    # ttZ CR systematic line
    btag_cr_hist = r.TH1F("btag_cr", "", nbins, 0, nbins)
    for i in xrange(1, nbins + 1):
        btag_cr_hist.SetBinContent(i, expected_nevt_ttz)
    alpha = hists_db["ttz"]["Nominal"].Clone("alpha")
    alpha.Divide(btag_cr_hist)
    thissyst = {}
    for proc in mcprocs:
        if proc == "ttz":
            thissyst["offz{}_".format(year) +
                     proc] = ["{:4f}".format(alpha.GetBinContent(1))]
        else:
            thissyst["offz{}_".format(year) + proc] = 0
    systs.append(("CRTTZ{}".format(year), "gmN", [btag_cr_hist], thissyst))

    # Experimental systematics
    for systcateg in systcategs:
        thissyst = {}
        for proc in mcprocs:
            if proc not in ["zz", "ttz"]:
                thissyst["offz{}_".format(year) + proc] = [
                    hists_db[proc][systcateg + "Up"],
                    hists_db[proc][systcateg + "Down"]
                ]
            else:
                thissyst["offz{}_".format(year) + proc] = 0
        systs.append((systcateg + year, "lnN", [], thissyst))

    # # Flat additional systematics
    # thissyst = {}
    # for proc in mcprocs:
    #     if proc == "ttz": thissyst["offz{}_".format(year) + proc] = "1.10"
    #     else: thissyst["offz{}_".format(year) + proc] = 0
    # systs.append( ("FlatSystTFeemmTTZ{}".format(year), "lnN", [], thissyst) )

    # # Flat additional systematics
    # thissyst = {}
    # for proc in mcprocs:
    #     if proc == "ttz": thissyst["offz{}_".format(year) + proc] = "1.03"
    #     else: thissyst["offz{}_".format(year) + proc] = 0
    # systs.append( ("FlatSystMETexpTTZ{}".format(year), "lnN", [], thissyst) )

    # Flat additional systematics
    thissyst = {}
    for proc in mcprocs:
        if proc == "ttz": thissyst["offz{}_".format(year) + proc] = "1.111924"
        else: thissyst["offz{}_".format(year) + proc] = 0
    systs.append(("FlatSystTFEEMMTTZ{}".format(year), "lnN", [], thissyst))

    # Flat additional systematics
    thissyst = {}
    for proc in mcprocs:
        if proc == "zz": thissyst["offz{}_".format(year) + proc] = "1.167012"
        else: thissyst["offz{}_".format(year) + proc] = 0
    systs.append(("FlatSystTFEEMMZZ{}".format(year), "lnN", [], thissyst))

    # # Flat additional systematics
    # thissyst = {}
    # for proc in mcprocs:
    #     if proc == "zz": thissyst["offz{}_".format(year) + proc] = "1.23"
    #     else: thissyst["offz{}_".format(year) + proc] = 0
    # systs.append( ("FlatSystMETexpZZ{}".format(year), "lnN", [], thissyst) )

    # Flat additional systematics
    thissyst = {}
    for proc in mcprocs:
        if proc == "wz":
            thissyst["offz{}_".format(year) + proc] = "1.6"  # Fake Syst
        else:
            thissyst["offz{}_".format(year) + proc] = 0
    systs.append(("FlatSystWZ{}".format(year), "lnN", [], thissyst))

    # Flat additional systematics
    thissyst = {}
    for proc in mcprocs:
        thissyst["offz{}_".format(year) + proc] = "1.025"
    systs.append(("FlatSystLumi{}".format(year), "lnN", [], thissyst))

    # Flat additional systematics
    thissyst = {}
    for proc in mcprocs:
        thissyst["offz{}_".format(year) + proc] = "1.03"
    systs.append(("FlatSystsIP3D{}".format(year), "lnN", [], thissyst))

    # Flat additional systematics
    thissyst = {}
    for proc in mcprocs:
        thissyst["offz{}_".format(year) + proc] = "1.02"
    systs.append(("FlatSystsTrigSF{}".format(year), "lnN", [], thissyst))

    # Now create data card writer
    sig = hists_db["sig"]["Nominal"]
    bgs = [hists_db[proc]["Nominal"] for proc in bkgprocs]
    data = hists_db["data_obs"]["Nominal"]
    d = dw.DataCardWriter(
        sig=sig,
        bgs=bgs,
        data=data,
        systs=systs,
        no_stat_procs=["offz{}_zz".format(year), "offz{}_ttz".format(year)])

    for i in xrange(1, nbins + 1):
        d.set_bin(i)
        d.set_region_name("bin{}".format(i))
        d.write("stats/{}/offz_datacard_bin{}.txt".format(prefix, i))
        if args.print_yields and args.wwz_only:
            vals = d.print_yields(detail=args.print_detail)
            if vals:
                print_yield_table(vals[0], vals[1],
                                  "textable/offz{}".format(year))
                finalyields.append(vals)

    if len(finalyields) > 0:

        procs = [
            "sig", "wzz", "zzz", "zz", "ttz", "twz", "wz", "higgs", "other"
        ]

        histsdict = {}
        for proc in procs:
            if proc == "sig":
                h = r.TH1F("WWZ", "", 6, 0, 6)
            elif proc == "wzz":
                h = r.TH1F("WZZ", "", 6, 0, 6)
            elif proc == "zzz":
                h = r.TH1F("ZZZ", "", 6, 0, 6)
            else:
                h = r.TH1F("Fit{}".format(proc), "", 6, 0, 6)
            h.GetXaxis().SetBinLabel(1, "e#mu Bin 1")
            h.GetXaxis().SetBinLabel(2, "e#mu Bin 2")
            h.GetXaxis().SetBinLabel(3, "e#mu Bin 3")
            h.GetXaxis().SetBinLabel(4, "e#mu Bin 4")
            h.GetXaxis().SetBinLabel(5, "e#mu Bin 5")
            h.GetXaxis().SetBinLabel(6, "ee/#mu#mu")
            histsdict[proc] = h

        for index, item in enumerate(finalyields):
            for procfullname, rate in zip(item[0], item[1]):
                procname = procfullname.split("_")[1]
                print index, procname, rate
                histsdict[procname].SetBinContent(index + 1, rate.val)
                histsdict[procname].SetBinError(index + 1, rate.err)
        bkghists = [histsdict[proc].Clone() for proc in procs[3:]]
        sighists = [histsdict[proc].Clone() for proc in procs[:3]]

        lumi = 137
        if "2016" in year: lumi = 35.9
        if "2017" in year: lumi = 41.3
        if "2018" in year: lumi = 59.74

        p.plot_hist(
            bgs=bkghists,
            sigs=sighists,
            options={
                "output_name": "fitplot/fit{}.pdf".format(year),
                "print_yield": True,
                "signal_scale": 1,
                "legend_scalex": 1.8,
                "legend_scaley": 1.0,
                "legend_ncolumns": 3,
                "legend_smart": True,
                "yaxis_log": False,
                "ymax_scale": 1.2,
                "lumi_value": lumi,
                # "no_overflow": True,
                "remove_underflow": True,
                "xaxis_ndivisions": 505,
                "ratio_range": [0., 2.],
                "xaxis_label": "Fit regions",
                "ratio_xaxis_title": "Fit regions",
                "no_ratio": True,
            },
            colors=[2001, 2005, 2007, 2003, 2011, 920, 2012, 2011, 2002],
            legend_labels=["ZZ", "t#bar{t}Z", "tWZ", "WZ", "Higgs", "Other"],
            # sig_labels = ["WWZ","WZZ","ZZZ"]
        )
示例#3
0
def plot(histnames, ps=0, sf=None, sfqcd=None, output_suffix="", dd_qcd=None):

    # Glob the file lists
    bkg_list_wjets = [output_dirpath + "/wj_incl.root"]
    bkg_list_dy = [output_dirpath + "/dy.root"]
    bkg_list_ttbar = [output_dirpath + "/tt_incl.root"]
    bkg_list_vv = [output_dirpath + "/ww.root", output_dirpath + "/wz.root"]
    bkg_list_qcd_mu = [output_dirpath + "/qcd_mu.root"]
    bkg_list_qcd_el = [output_dirpath + "/qcd_em.root"]
    bkg_list_qcd_bc = [output_dirpath + "/qcd_bc.root"]
    bkg_list_all = bkg_list_wjets + bkg_list_dy + bkg_list_ttbar + bkg_list_vv

    # Glob the data file list depending on the region
    if "Mu" in histnames:
        data_list = [output_dirpath + "/data_mu.root"]
    elif "El" in histnames:
        data_list = [output_dirpath + "/data_el.root"]
    else:
        data_list = [
            output_dirpath + "/data_mu.root", output_dirpath + "/data_el.root"
        ]

    # Get all the histogram objects
    h_wjets = ru.get_summed_histogram(bkg_list_wjets, histnames)
    h_dy = ru.get_summed_histogram(bkg_list_dy, histnames)
    h_ttbar = ru.get_summed_histogram(bkg_list_ttbar, histnames)
    h_vv = ru.get_summed_histogram(bkg_list_vv, histnames)
    h_qcd_mu = ru.get_summed_histogram(bkg_list_qcd_mu, histnames)
    h_qcd_el = ru.get_summed_histogram(bkg_list_qcd_el, histnames)
    h_qcd_bc = ru.get_summed_histogram(bkg_list_qcd_bc, histnames)
    h_data = ru.get_summed_histogram(data_list, histnames)

    # Set the names of the histograms
    h_wjets.SetName("W")
    h_dy.SetName("Z")
    h_ttbar.SetName("Top")
    h_vv.SetName("VV")
    h_qcd_mu.SetName("QCD(#mu)")
    h_qcd_el.SetName("QCD(e)")
    h_qcd_bc.SetName("QCD(bc)")
    h_data.SetName("Data")

    # print h_wjets.Integral() + h_dy.Integral() + h_ttbar.Integral() + h_vv.Integral()
    # print h_qcd_el.Integral() + h_qcd_bc.Integral()

    # Scale the histograms appropriately from SF from the EWKCR
    if sf:
        if isinstance(sf, list):
            hists = [h_wjets, h_dy, h_ttbar, h_vv]
            for h in hists:
                for ii, s in enumerate(sf):
                    bc = h.GetBinContent(ii + 1)
                    be = h.GetBinError(ii + 1)
                    h.SetBinContent(ii + 1, bc * s)
                    h.SetBinError(ii + 1, be * s)
        else:
            if sf > 0:
                h_wjets.Scale(sf)
                h_dy.Scale(sf)
                h_ttbar.Scale(sf)
                h_vv.Scale(sf)
    if sfqcd:
        if isinstance(sfqcd, list):
            hists = [h_qcd_mu, h_qcd_el, h_qcd_bc]
            for h in hists:
                for ii, s in enumerate(sfqcd):
                    bc = h.GetBinContent(ii + 1)
                    be = h.GetBinError(ii + 1)
                    h.SetBinContent(ii + 1, bc * s)
                    h.SetBinError(ii + 1, be * s)
        else:
            if sfqcd > 0:
                h_qcd_mu.Scale(sfqcd)
                h_qcd_el.Scale(sfqcd)
                h_qcd_bc.Scale(sfqcd)

    # If the data needs some additional correction for the prescale
    if ps > 0:
        h_data.Scale(ps)

    # print h_wjets.Integral() + h_dy.Integral() + h_ttbar.Integral() + h_vv.Integral()
    # print h_qcd_el.Integral() + h_qcd_bc.Integral()
    # print h_data.Integral()

    # Color settings
    colors = [2007, 2005, 2003, 2001, 920, 921]

    # Options
    alloptions = {
        "ratio_range": [0.0, 2.0],
        "nbins":
        30,
        "autobin":
        False,
        "legend_scalex":
        1.8,
        "legend_scaley":
        1.1,
        "output_name":
        "plots/{}/{}/{}/plot/{}{}.pdf".format(input_ntup_tag, analysis_tag,
                                              "ss" if isSS else "3l",
                                              histnames, output_suffix),
        "bkg_sort_method":
        "unsorted",
        "no_ratio":
        False,
        "print_yield":
        True,
        "yaxis_log":
        False if "ptcorr" in histnames else False,
        #"yaxis_log": False,
        #"yaxis_log": False,
        "divide_by_bin_width":
        True,
        "legend_smart":
        False if "ptcorr" in histnames else True,
        "lumi_value":
        lumi,
    }

    # The bkg histogram list
    h_qcd = h_qcd_mu if "Mu" in histnames else h_qcd_el
    if dd_qcd:
        h_qcd = dd_qcd
    bgs_list = [h_vv, h_ttbar, h_dy, h_wjets, h_qcd]

    legend_labels = ["VV", "t#bar{t}", "DY", "W", "QCD(#mu)"
                     ] if "Mu" in histnames else [
                         "VV", "t#bar{t}", "DY", "W", "QCD(e)", "QCD(HF)"
                     ]
    if "Mu" not in histnames:
        bgs_list.append(h_qcd_bc)

    # # For 2018 merge the last two bins in the central
    # if "ptcorretarolledcoarse" in histnames:
    #     def merge_4_5(h):
    #         bc4 = h.GetBinContent(4)
    #         bc5 = h.GetBinContent(5)
    #         be4 = h.GetBinError(4)
    #         be5 = h.GetBinError(5)
    #         nb = E(bc4, be4) + E(bc5, be5)
    #         nbc = nb.val
    #         nbe = nb.err
    #         h.SetBinContent(4, nbc)
    #         h.SetBinError(4, nbe)
    #         h.SetBinContent(5, nbc)
    #         h.SetBinError(5, nbe)
    #     merge_4_5(h_vv)
    #     merge_4_5(h_ttbar)
    #     merge_4_5(h_dy)
    #     merge_4_5(h_wjets)
    #     merge_4_5(h_qcd_mu)
    #     merge_4_5(h_qcd_el)
    #     merge_4_5(h_qcd_bc)
    #     merge_4_5(h_data)

    # Plot them
    p.plot_hist(bgs=bgs_list,
                data=h_data.Clone("Data"),
                colors=colors,
                syst=None,
                legend_labels=legend_labels,
                options=alloptions)

    # print h_wjets.Integral() + h_dy.Integral() + h_ttbar.Integral() + h_vv.Integral()
    # print h_qcd_el.Integral() + h_qcd_bc.Integral()
    # print h_data.Integral()

    # Obtain the histogram again to return the object for further calculations

    # Data-driven QCD = data - bkg
    h_ddqcd = ru.get_summed_histogram(data_list, histnames)
    h_bkg = ru.get_summed_histogram(bkg_list_all, histnames)
    h_wjets = ru.get_summed_histogram(bkg_list_wjets, histnames)
    h_dy = ru.get_summed_histogram(bkg_list_dy, histnames)
    h_ttbar = ru.get_summed_histogram(bkg_list_ttbar, histnames)
    h_vv = ru.get_summed_histogram(bkg_list_vv, histnames)
    if ps > 0:
        h_ddqcd.Scale(ps)
    # Scale the histograms appropriately from SF from the EWKCR
    if sf:
        if isinstance(sf, list):
            hists = [h_bkg, h_wjets, h_dy, h_ttbar, h_vv]
            for h in hists:
                for ii, s in enumerate(sf):
                    bc = h.GetBinContent(ii + 1)
                    be = h.GetBinError(ii + 1)
                    h.SetBinContent(ii + 1, bc * s)
                    h.SetBinError(ii + 1, be * s)
        else:
            if sf > 0:
                h_bkg.Scale(sf)
                h_wjets.Scale(sf)
                h_dy.Scale(sf)
                h_ttbar.Scale(sf)
                h_vv.Scale(sf)

    if "ptcorretarolled" in histnames:

        # print h_ddqcd.GetBinContent(6), h_ddqcd.GetBinContent(7)
        # d6 = E(h_ddqcd.GetBinContent(6), h_ddqcd.GetBinError(6)) + E(h_ddqcd.GetBinContent(7), h_ddqcd.GetBinError(7))
        # d13 = E(h_ddqcd.GetBinContent(13), h_ddqcd.GetBinError(13)) + E(h_ddqcd.GetBinContent(14), h_ddqcd.GetBinError(14))
        # b6 = E(h_bkg.GetBinContent(6), h_bkg.GetBinError(6)) + E(h_bkg.GetBinContent(7), h_bkg.GetBinError(7))
        # b13 = E(h_bkg.GetBinContent(13), h_bkg.GetBinError(13)) + E(h_bkg.GetBinContent(14), h_bkg.GetBinError(14))
        # h_ddqcd.SetBinContent(6, d6.val)
        # h_ddqcd.SetBinContent(7, d6.val)
        # h_ddqcd.SetBinError(6, d6.err)
        # h_ddqcd.SetBinError(7, d6.err)
        # h_ddqcd.SetBinContent(13, d13.val)
        # h_ddqcd.SetBinContent(14, d13.val)
        # h_ddqcd.SetBinError(13, d13.err)
        # h_ddqcd.SetBinError(14, d13.err)
        # h_bkg.SetBinContent(6, b6.val)
        # h_bkg.SetBinContent(7, b6.val)
        # h_bkg.SetBinError(6, b6.err)
        # h_bkg.SetBinError(7, b6.err)
        # h_bkg.SetBinContent(13, b13.val)
        # h_bkg.SetBinContent(14, b13.val)
        # h_bkg.SetBinError(13, b13.err)
        # h_bkg.SetBinError(14, b13.err)

        for ii in xrange(1, h_ddqcd.GetNbinsX() + 1):
            data_bc = h_ddqcd.GetBinContent(ii)
            data_be = h_ddqcd.GetBinError(ii)
            bkg_bc = h_bkg.GetBinContent(ii)
            bkg_be = h_bkg.GetBinError(ii)
            d = E(data_bc, data_be)
            b = E(bkg_bc, bkg_be)
            n = d - b
            if isSS:
                if d.err > n.val:
                    n.val = d.err

            h_ddqcd.SetBinContent(ii, n.val)
            h_ddqcd.SetBinError(ii, n.err)

    else:
        h_ddqcd.Add(h_bkg, -1)

    # MC QCD
    h_qcd_mu = ru.get_summed_histogram(bkg_list_qcd_mu,
                                       histnames).Clone("QCD(#mu)")
    h_qcd_el = ru.get_summed_histogram(bkg_list_qcd_el,
                                       histnames).Clone("QCD(EM)")
    h_qcd_bc = ru.get_summed_histogram(bkg_list_qcd_bc,
                                       histnames).Clone("QCD(HF)")

    return h_ddqcd, h_data, h_bkg, h_qcd_mu, h_qcd_el, h_qcd_bc, h_wjets, h_dy, h_ttbar, h_vv
示例#4
0
    def el_iso(binname=""):

        # Glob the file lists
        mcs = [
            output_dirpath + "/wj_ht.root",
            output_dirpath + "/tt_1l.root",
        ]
        qcds = [
            output_dirpath + "/qcd_em.root",
            output_dirpath + "/qcd_bc.root",
        ]

        bkg_hist = "ElClosureLoose{}__eliso".format(binname)
        qcd_hist = "OneElMR{}__iso".format(binname)

        h_bkg = ru.get_summed_histogram(mcs, bkg_hist)
        h_qcd = ru.get_summed_histogram(qcds, qcd_hist)
        h_qcd_em = ru.get_summed_histogram([output_dirpath + "/qcd_em.root"],
                                           qcd_hist)
        h_qcd_bc = ru.get_summed_histogram([output_dirpath + "/qcd_bc.root"],
                                           qcd_hist)

        h_bkg.Scale(1. / h_bkg.Integral())
        h_qcd.Scale(1. / h_qcd.Integral())
        h_qcd_em.Scale(1. / h_qcd_em.Integral())
        h_qcd_bc.Scale(1. / h_qcd_bc.Integral())

        h_qcd.SetName("QCD(e)")
        h_qcd_em.SetName("QCD(LF)")
        h_qcd_bc.SetName("QCD(HF)")

        # Color settings
        colors = [
            2001,
        ]

        # Options
        alloptions = {
            "ratio_range": [0.0, 2.0],
            "nbins":
            10,
            "autobin":
            False,
            "legend_scalex":
            1.8,
            "legend_scaley":
            1.1,
            "output_name":
            "plots/{}/{}/{}/eliso/{}.pdf".format(input_ntup_tag, analysis_tag,
                                                 "ss" if isSS else "3l",
                                                 bkg_hist + "__" + qcd_hist),
            "bkg_sort_method":
            "unsorted",
            "no_ratio":
            False,
            "print_yield":
            True,
            "yield_prec":
            3,
            "draw_points":
            True,
            "lumi_value":
            41.3,
            "legend_datalabel":
            "W+t#bar{t}",
        }

        # Plot them
        p.plot_hist(sigs=[h_qcd_em, h_qcd_bc],
                    bgs=[h_qcd],
                    data=h_bkg,
                    colors=colors,
                    syst=None,
                    options=alloptions)
示例#5
0
    def el_fakerate():

        # Glob the file lists
        mcs = [
            output_dirpath + "/wj_ht.root",
            output_dirpath + "/tt_1l.root",
        ]
        num = "ElClosureTight__elptcorretarolledcoarse"
        den = "ElClosureLoose__elptcorretarolledcoarse"
        h_num = ru.get_summed_histogram(mcs, num)
        h_den = ru.get_summed_histogram(mcs, den)
        u.move_in_overflows(h_num)
        u.move_in_overflows(h_den)
        h_num.Divide(h_den)

        qcds = [
            output_dirpath + "/qcd_em.root",
            output_dirpath + "/qcd_bc.root",
        ]
        qcd_num = "OneElTightMR__elptcorretarolledcoarse"
        qcd_den = "OneElMR__elptcorretarolledcoarse"
        h_qcd_num = ru.get_summed_histogram(qcds, qcd_num)
        h_qcd_den = ru.get_summed_histogram(qcds, qcd_den)
        u.move_in_overflows(h_qcd_num)
        u.move_in_overflows(h_qcd_den)
        h_qcd_num.Divide(h_qcd_den)
        h_qcd_num.SetName("QCD(e)")

        # Color settings
        colors = [
            2005,
            2001,
        ]

        # Options
        alloptions = {
            "ratio_range": [0.0, 2.0],
            "nbins":
            180,
            "autobin":
            False,
            "legend_scalex":
            1.8,
            "legend_scaley":
            1.1,
            "output_name":
            "plots/{}/{}/{}/fakeratemc/{}.pdf".format(input_ntup_tag,
                                                      analysis_tag,
                                                      "ss" if isSS else "3l",
                                                      num + "__" + den),
            "bkg_sort_method":
            "unsorted",
            "no_ratio":
            False,
            "print_yield":
            True,
            "yield_prec":
            3,
            "draw_points":
            True,
            "lumi_value":
            41.3,
            "legend_datalabel":
            "W+t#bar{t}"
        }

        # Plot them
        p.plot_hist(bgs=[h_qcd_num],
                    data=h_num,
                    colors=colors,
                    syst=None,
                    options=alloptions)
示例#6
0
    def plot(histnames, ps=0, sf=0):

        # Glob the file lists
        #    bkg_list_wjets  = glob.glob(output_dirpath+"/WJetsToLNu_Tune*.root")
        #    bkg_list_dy     = glob.glob(output_dirpath+"/DY*.root")
        #    bkg_list_ttbar  = glob.glob(output_dirpath+"/TTJets_Tune*.root")
        #    bkg_list_vv     = glob.glob(output_dirpath+"/WW*.root") + glob.glob(output_dirpath+"/WW*.root")
        #    bkg_list_qcd_mu = glob.glob(output_dirpath+"/QCD*MuEn*.root")
        #    bkg_list_qcd_el = glob.glob(output_dirpath+"/QCD*EMEn*.root")
        #    bkg_list_qcd_bc = glob.glob(output_dirpath+"/QCD*bcToE*.root")
        bkg_list_wjets = [output_dirpath + "/wj_incl.root"]
        bkg_list_dy = [output_dirpath + "/dy.root"]
        bkg_list_ttbar = [output_dirpath + "/tt_incl.root"]
        bkg_list_vv = [
            output_dirpath + "/ww.root", output_dirpath + "/wz.root"
        ]
        bkg_list_qcd_mu = [output_dirpath + "/qcd_mu.root"]
        bkg_list_qcd_el = [output_dirpath + "/qcd_em.root"]
        bkg_list_qcd_bc = [output_dirpath + "/qcd_bc.root"]
        bkg_list_all = bkg_list_wjets + bkg_list_dy + bkg_list_ttbar + bkg_list_vv

        # Glob the data file list depending on the region
        if "Mu" in histnames:
            data_list = [output_dirpath + "/data_mu.root"]
        elif "El" in histnames:
            data_list = [output_dirpath + "/data_el.root"]
        else:
            data_list = [
                output_dirpath + "/data_mu.root",
                output_dirpath + "/data_el.root"
            ]

        # Get all the histogram objects
        h_wjets = ru.get_summed_histogram(bkg_list_wjets, histnames)
        h_dy = ru.get_summed_histogram(bkg_list_dy, histnames)
        h_ttbar = ru.get_summed_histogram(bkg_list_ttbar, histnames)
        h_vv = ru.get_summed_histogram(bkg_list_vv, histnames)
        h_qcd_mu = ru.get_summed_histogram(bkg_list_qcd_mu, histnames)
        h_qcd_el = ru.get_summed_histogram(bkg_list_qcd_el, histnames)
        h_qcd_bc = ru.get_summed_histogram(bkg_list_qcd_bc, histnames)
        h_data = ru.get_summed_histogram(data_list, histnames)

        # Set the names of the histograms
        h_wjets.SetName("W")
        h_dy.SetName("Z")
        h_ttbar.SetName("Top")
        h_vv.SetName("VV")
        h_qcd_mu.SetName("QCD(#mu)")
        h_qcd_el.SetName("QCD(e)")
        h_qcd_bc.SetName("QCD(bc)")
        h_data.SetName("Data")

        # Scale the histograms appropriately from SF from the EWKCR
        if sf > 0:
            h_wjets.Scale(sf)
            h_dy.Scale(sf)
            h_ttbar.Scale(sf)
            h_vv.Scale(sf)

        # If the data needs some additional correction for the prescale
        if ps > 0:
            h_data.Scale(ps)

        # Color settings
        colors = [2007, 2005, 2003, 2001, 920, 2]

        # Options
        alloptions = {
            "ratio_range": [0.0, 2.0],
            "nbins":
            30,
            "autobin":
            False,
            "legend_scalex":
            1.8,
            "legend_scaley":
            1.1,
            "output_name":
            "plots/{}/{}/{}/plot/{}.pdf".format(input_ntup_tag, analysis_tag,
                                                "ss" if isSS else "3l",
                                                histnames),
            "bkg_sort_method":
            "unsorted",
            "no_ratio":
            False,
            "print_yield":
            False,
            "yaxis_log":
            True if "ptcorr" in histnames else False,
            #"yaxis_log": False,
            "divide_by_bin_width":
            True,
            "legend_smart":
            False if "ptcorr" in histnames else True,
            "lumi_value":
            41.3,
        }

        # The bkg histogram list
        bgs_list = [h_vv, h_ttbar, h_dy, h_wjets, h_qcd_mu],
        bgs_list = [
            h_vv, h_ttbar, h_dy, h_wjets, h_qcd_mu
        ] if "Mu" in histnames else [h_vv, h_ttbar, h_dy, h_wjets, h_qcd_el]

        legend_labels = ["VV", "t#bar{t}", "DY", "W", "QCD"]

        # Plot them
        p.plot_hist(bgs=bgs_list,
                    data=h_data.Clone("Data"),
                    colors=colors,
                    syst=None,
                    legend_labels=legend_labels,
                    options=alloptions)

        # Obtain the histogram again to return the object for further calculations

        # Data-driven QCD = data - bkg
        h_ddqcd = ru.get_summed_histogram(data_list, histnames)
        h_bkg = ru.get_summed_histogram(bkg_list_all, histnames)
        if ps > 0:
            h_ddqcd.Scale(ps)
        if sf > 0:
            h_bkg.Scale(sf)
        h_ddqcd.Add(h_bkg, -1)

        # MC QCD
        h_qcd_mu = ru.get_summed_histogram(bkg_list_qcd_mu,
                                           histnames).Clone("QCD(#mu)")
        h_qcd_el = ru.get_summed_histogram(bkg_list_qcd_el,
                                           histnames).Clone("QCD(EM)")
        h_qcd_bc = ru.get_summed_histogram(bkg_list_qcd_bc,
                                           histnames).Clone("QCD(HF)")

        return h_ddqcd, h_data, h_bkg, h_qcd_mu, h_qcd_el, h_qcd_bc
示例#7
0
def get_alpha_uncertainty(ntuple_version, tag, numerator, denominator,
                          num_proc, valopt):

    if "2016" in ntuple_version: lumi = 35.9
    if "2017" in ntuple_version: lumi = 41.3
    if "2018" in ntuple_version: lumi = 59.74

    plots_basedir = "plots/{}/{}/exp/".format(ntuple_version, tag)

    fname_sig = "outputs/{}/{}/sig.root".format(ntuple_version, tag)
    # fname_sig     = "outputs/{}/{}/wwz.root".format(ntuple_version, tag)
    fname_ttz = "outputs/{}/{}/ttz.root".format(ntuple_version, tag)
    fname_zz = "outputs/{}/{}/zz.root".format(ntuple_version, tag)
    fname_wz = "outputs/{}/{}/wz.root".format(ntuple_version, tag)
    fname_twz = "outputs/{}/{}/twz.root".format(ntuple_version, tag)
    fname_rare = "outputs/{}/{}/rare.root".format(ntuple_version, tag)
    # fname_rare    = "outputs/{}/{}/rarevvv.root".format(ntuple_version, tag)
    fname_dyttbar = "outputs/{}/{}/dyttbar.root".format(ntuple_version, tag)
    fname_higgs = "outputs/{}/{}/higgs.root".format(ntuple_version, tag)
    fname_data = "outputs/{}/{}/data.root".format(ntuple_version, tag)

    year = "2" + ntuple_version.split("_")[0].split("2")[1]
    prefix = "{}/{}".format(ntuple_version, tag)

    procs = [
        "data_obs", "sig", "ttz", "zz", "wz", "twz", "rare", "dyttbar", "higgs"
    ]
    mcprocs = procs[1:]
    bkgprocs = procs[2:]
    fnames = [
        fname_data, fname_sig, fname_ttz, fname_zz, fname_wz, fname_twz,
        fname_rare, fname_dyttbar, fname_higgs
    ]
    nonzzbkg = [
        fname_sig, fname_ttz, fname_wz, fname_twz, fname_rare, fname_dyttbar,
        fname_higgs
    ]
    nonttzbkg = [
        fname_sig, fname_zz, fname_wz, fname_twz, fname_rare, fname_dyttbar,
        fname_higgs
    ]

    if num_proc == "zz":

        h_denom_nonzzbkg = pr.get_summed_histogram(nonzzbkg, denominator)
        E_denom_nonzzbkg = pr.get_integral_as_E(h_denom_nonzzbkg)
        h_denom_data = pr.get_summed_histogram([fname_data], denominator)
        E_denom_data = pr.get_integral_as_E(h_denom_data)
        h_denom_zz = pr.get_summed_histogram([fname_zz], denominator)
        E_denom_zz = pr.get_integral_as_E(h_denom_zz)
        # print (E_denom_data - E_denom_nonzzbkg)
        # print E_denom_zz

        h_numer_nonzzbkg = pr.get_summed_histogram(nonzzbkg, numerator)
        E_numer_nonzzbkg = pr.get_integral_as_E(h_numer_nonzzbkg)
        h_numer_data = pr.get_summed_histogram([fname_data], numerator)
        E_numer_data = pr.get_integral_as_E(h_numer_data)
        h_numer_zz = pr.get_summed_histogram([fname_zz], numerator)
        E_numer_zz = pr.get_integral_as_E(h_numer_zz)
        # print (E_numer_data - E_numer_nonzzbkg)
        # print E_numer_zz

        data_eff = (E_numer_data - E_numer_nonzzbkg) / (E_denom_data -
                                                        E_denom_nonzzbkg)
        mc_eff = E_numer_zz / E_denom_zz
        eff_ratio = data_eff / mc_eff
        # print E_numer_data, E_numer_zz
        # print "mc_eff:", mc_eff
        # print "data_eff:", data_eff
        if valopt == "eff":
            return mc_eff
        elif valopt == "den":
            return E_denom_zz
        elif valopt == "num":
            return E_numer_zz

    else:

        h_denom_nonttzbkg = pr.get_summed_histogram(nonttzbkg, denominator)
        E_denom_nonttzbkg = pr.get_integral_as_E(h_denom_nonttzbkg)
        h_denom_data = pr.get_summed_histogram([fname_data], denominator)
        E_denom_data = pr.get_integral_as_E(h_denom_data)
        h_denom_ttz = pr.get_summed_histogram([fname_ttz], denominator)
        E_denom_ttz = pr.get_integral_as_E(h_denom_ttz)
        # print (E_denom_data - E_denom_nonttzbkg)
        # print E_denom_ttz

        h_numer_nonttzbkg = pr.get_summed_histogram(nonttzbkg, numerator)
        E_numer_nonttzbkg = pr.get_integral_as_E(h_numer_nonttzbkg)
        h_numer_data = pr.get_summed_histogram([fname_data], numerator)
        E_numer_data = pr.get_integral_as_E(h_numer_data)
        h_numer_ttz = pr.get_summed_histogram([fname_ttz], numerator)
        E_numer_ttz = pr.get_integral_as_E(h_numer_ttz)
        # print (E_numer_data - E_numer_nonttzbkg)
        # print E_numer_ttz

        data_eff = (E_numer_data - E_numer_nonttzbkg) / (E_denom_data -
                                                         E_denom_nonttzbkg)
        mc_eff = E_numer_ttz / E_denom_ttz
        eff_ratio = data_eff / mc_eff
        # print "mc_eff:", mc_eff
        # print "data_eff:", data_eff
        if valopt == "eff":
            return mc_eff
        elif valopt == "den":
            return E_denom_ttz
        elif valopt == "num":
            return E_numer_ttz