def movemap(pose, PDB_out=False): """ Demonstrates the syntax necessary for basic usage of the MoveMap object performs these changes with a demonstrative backbone minimization using <pose> and writes structures to PDB files if <PDB_out> is True """ ######### # MoveMap # a MoveMap encodes what data is allowed to change in a Pose, referred to as # its degrees of freedom # a MoveMap is separate from a Pose and is usually required by a Mover so # that the correct degrees of freedom are manipulated, in this way, # MoveMap and Pose objects often work in parallel # several MoveMap's can correspond to the same Pose # a MoveMap stores information on a per-residue basis about the # backbone ({phi, psi, omega}) and chi ({chi_i}) torsion angle sets # the MoveMap can only set these sets of torsions to True or False, it # cannot set freedom for the individual angles (such as phi free and psi # fixed) # the MoveMap has no upper-limit on its residue information, it defaults to # all residues (up to residue 99999999) backbone and chi False # you can view the MoveMap per-residue torsion settings by using the # MoveMap.show( Pose.total_residue() ) method (the input argument is the # highest residue to output, it does not support viewing a range) pose_move_map = MoveMap() # change all backbone torsion angles pose_move_map.set_bb(True) # change all chi angle torsion angles (False by default) pose_move_map.set_chi(False) # change a single backbone torsion angles #pose_move_map.set_bb(1, True) # example syntax # change a single residue's chi torsion angles #pose_move_map.set_chi(1, True) # example syntax pose_move_map.show(pose.total_residue()) # perform gradient based minimization on the "median" residues, this # method (MinMover) determines the gradient of an input pose using a # ScoreFunction for evaluation and a MoveMap to define the degrees of # freedom # create a standard ScoreFunction scorefxn = get_fa_scorefxn( ) # create_score_function_ws_patch('standard', 'score12') # redefine the MoveMap to include the median half of the residues # turn "off" all backbone torsion angles pose_move_map.set_bb(False) # reset to backbone False # turn "on" a range of residue backbone torsion angles pose_move_map.set_bb_true_range(int(pose.total_residue() / 4), int(pose.total_residue() * 3 / 4)) # create the MinMover minmover = protocols.minimization_packing.MinMover() minmover.score_function(scorefxn) minmover.movemap(pose_move_map) # create a copy of the pose test_pose = Pose() test_pose.assign(pose) # apply minimization scorefxn(test_pose) # to prevent verbose output on the next line pymover = PyMOLMover() #### uncomment the line below and "comment-out" the two lines below to #### export the structures into different PyMOL states of the same object #pymover.keep_history = True # enables viewing across states #### comment-out the line below, changing PDBInfo names tells the #### PyMOLMover to produce new objects test_pose.pdb_info().name('original') pymover.apply(test_pose) print('\nPre minimization score:', scorefxn(test_pose)) minmover.apply(test_pose) if PDB_out: test_pose.dump_pdb('minimized.pdb') print('Post minimization score:', scorefxn(test_pose)) #### comment-out the line below test_pose.pdb_info().name('minimized') pymover.apply(test_pose)
def sample_single_loop_modeling(pdb_filename, loop_begin, loop_end, loop_cutpoint, frag_filename, frag_length, outer_cycles_low=2, inner_cycles_low=5, init_temp_low=2.0, final_temp_low=0.8, outer_cycles_high=5, inner_cycles_high=10, init_temp_high=2.2, final_temp_high=0.6, jobs=1, job_output='loop_output'): """ Performs simple single loop construction on the input <pdb_filename> with loop from <loop_begin> to <loop_end> with a cutpoint at <loop_cutpoint> using fragments of length <frag_length> in the file <frag_filename>. <jobs> trajectories are performed, each using a low resolution (centroid) simulated annealing with <outer_cycles> rounds and <inner_cycles> steps per round decrementing "temperature" from <init_temp> to <final_temp> geometrically. Output structures are named <job_output>_(job#).pdb. """ # 1. create a pose from the desired PDB file p = Pose() pose_from_file(p, pdb_filename) # 2. create a reference copy of the pose in fullatom starting_p = Pose() starting_p.assign(p) #### if you are constructing multiple loops simultaneously, changes will #### occur in most of the steps below # 3. create the Loop object # (note: Loop objects merely specify residues, they contain no # conformation data) my_loop = protocols.loops.Loop(loop_begin, loop_end, loop_cutpoint) #### if using multiple loops, add additional Loop objects # 4. use the Loop to set the pose FoldTree protocols.loops.set_single_loop_fold_tree(p, my_loop) #### alternate FoldTree setup, if you uncomment the lines below, #### comment-out the set_single_loop_foldtree line above (line 189) #### -create an empty FoldTree #ft = FoldTree() #### -make it a single edge the length of pose #ft.simple_tree(p.total_residue()) #### -insert a jump corresponding to the single loop region #ft.add_jump(loop_begin - 2, loop_end + 2, loop_cutpoint) #### -give the pose this FoldTree (set it to this object), this will #### erase any previous FoldTree held by the pose #p.fold_tree(ft) #### there is also a fold_tree_from_loops method in exposed which sets up #### a FoldTree but it is different from set_single_loop_foldtree in #### that is creates jumps +/- 1 residue from their corresponding loop #### endpoints and requires a third argument, the FoldTree to setup # 5. sets the cut-point residues as cut-point variants protocols.loops.add_single_cutpoint_variant(p, my_loop) # 6. create the MoveMap, allow the loop region backbone and # all chi torsions to be free movemap = MoveMap() movemap.set_bb_true_range(loop_begin, loop_end) movemap.set_chi(True) # sets all chi torsions free # 7. setup the fragment Mover # this "try--except" is used to catch improper fragment files try: fragset = core.fragment.ConstantLengthFragSet(frag_length, frag_filename) #### the ConstantLengthFragSet is overloaded, this same #### ConstantLengthFragSet can be obtained with different syntax # to obtain custom fragments, see Generating Fragment Files below except: raise IOError('Make sure frag_length matches the fragments in\n\ frag_file and that frag_file is valid') fragment_mover = protocols.simple_moves.ClassicFragmentMover( fragset, movemap) # 8. create a Mover for loop modeling using CCD (low resolution) ccd_closure = protocols.loops.loop_closure.ccd.CCDLoopClosureMover( my_loop, movemap) # 9. create ScoreFunctions # for centroid, use the default centroid ScoreFunction with chainbreak on scorefxn_low = create_score_function('cen_std') # the chainbreak ScoreType exists to penalize broken bonds # try creating a broken pose in the interpreter and use a ScoreFunction # with a chainbreak score to investigate its impact, the score is 0.0 # except when a bond is broken # this penalizes failures caused by CCD failing to close the loop scorefxn_low.set_weight(core.scoring.chainbreak, 1) # for fullatom, used for packing and scoring final output scorefxn_high = get_fa_scorefxn( ) # create_score_function_ws_patch('standard', 'score12') # 10. setup sidechain packing Mover task_pack = core.pack.task.TaskFactory.create_packer_task(starting_p) task_pack.restrict_to_repacking() # prevents design, packing only task_pack.or_include_current(True) # considers original sidechains pack = protocols.minimization_packing.PackRotamersMover( scorefxn_high, task_pack) # 11. setup the high resolution refinement # by creating a Loops object, # (note: Loops is basically a list of Loop objects), sample_loops = protocols.loops.Loops() # giving it the loop to remodel, sample_loops.add_loop(my_loop) # and creating a fullatom CCD Mover (high resolution) # this Mover is somewhat abnormal since it handles everything itself, it: # -creates its own MoveMap for the loop regions # -creates its own ScoreFunction (default to get_fa_scorefxn()) # -creates its own FoldTree for the pose based on the loops # -creates its own MonteCarlo object for monitoring the pose # -performs "simulated annealing" with 3 outer cycles and 90 inner # cycles, very similar to the protocol outlined ere # -creates its own backbone Movers (SmallMover, ShearMover) # -creates its own PackRotamersMover, it does NOT restrict repacking # to the loop regions and can alter all sidechain conformations loop_refine = LoopMover_Refine_CCD(sample_loops) # some of these parameters or objects can be set but the protocol # executed by this Mover is effectively untouchable #loop_refine.set_score_function(scorefxn_high) # in beta v2 and above loop_refine.temp_initial(init_temp_high) loop_refine.temp_final(init_temp_high) loop_refine.outer_cycles(outer_cycles_high) loop_refine.max_inner_cycles(inner_cycles_high) # 12. create centroid <--> fullatom conversion Movers to_centroid = SwitchResidueTypeSetMover('centroid') to_fullatom = SwitchResidueTypeSetMover('fa_standard') # and a Mover to recover sidechain conformations # when a protocol samples backbone torsion space in centroid, # the sidechain conformations are neglected, when it is transferred # to fullatom, we typically set the sidechain conformations to their # "original" values and perform sidechain packing, # a ReturnSidechainMover saves a pose's sidechains (in this case # staring_pose) and when applied, inserts these conformations # into the input pose recover_sidechains = protocols.simple_moves.ReturnSidechainMover( starting_p) # 13. create a reference copy of the pose in centroid # the first stage of each trajectory is in centroid # so a centroid reference is needed and the pose must start in centroid to_centroid.apply(p) starting_p_centroid = Pose() starting_p_centroid.assign(p) # 14. create the geometric "temperature" increment for simulated annealing gamma = pow((final_temp_low / init_temp_low), (1.0 / (outer_cycles_low * inner_cycles_low))) # 15. create a PyMOLMover for exporting structures to PyMOL pymov = PyMOLMover() # uncomment the line below to load structures into successive states #pymov.keep_history(True) scorefxn_high(starting_p) # for exporting the scores pymov.apply(starting_p) pymov.send_energy(starting_p) # 16. create a (Py)JobDistributor # a PyJobDistributor uses the job_output argument to name all output files # and performs the specified number (int) of jobs # a ScoreFunction is required since the PyJobDistributor output .fasc file # contains scoring information about each output PDB jd = PyJobDistributor(job_output, jobs, scorefxn_high) jd.native_pose = starting_p # 17. perform the loop modeling protocol counter = 0 # for exporting to PyMOL while not jd.job_complete: # a. set necessary variables for the new trajectory # -reload the starting pose (centroid) p.assign(starting_p_centroid) # -change the pose's PDBInfo.name, for exporting to PyMOL counter += 1 p.pdb_info().name(job_output + '_' + str(counter) + '_cen') # -reset the starting "temperature" (to init_temp) kT = init_temp_low # -create a MonteCarlo object for this trajectory # a MonteCarlo object assesses pass/fail by the Metropolis Criteria # and also records information on the lowest scoring pose mc = MonteCarlo(p, scorefxn_low, kT) # b. "randomize" the loop #### this section may change if you intend to use multiple loops or #### alter the sampling method to "randomize" the loop # -by breaking it open, for i in range(loop_begin, loop_end + 1): p.set_phi(i, -180) p.set_psi(i, 180) pymov.apply(p) # -and then inserting fragments # the number of insertions performed is somewhat arbitrary for i in range(loop_begin, loop_end + 1): fragment_mover.apply(p) pymov.apply(p) #### # low resolution loop modeling: # c. simulated annealing incrementing kT geometrically # from init_temp to final_temp #### this section may change if you intend to use multiple loops or #### alter the sampling method for low resolution modeling for i in range(1, outer_cycles_low + 1): # -start with the lowest scoring pose mc.recover_low(p) # loads mc's lowest scoring pose into p # -take several steps of in the simulated annealing by for j in range(1, inner_cycles_low + 1): # >increasing the "temperature" kT = kT * gamma mc.set_temperature(kT) # >inserting a fragment, fragment_mover.apply(p) pymov.apply(p) # >performing CCD, ccd_closure.apply(p) pymov.apply(p) # >and assessing the Metropolis Criteria mc.boltzmann(p) #### # the LoopMover_Refine_CCD makes A LOT of moves, DO NOT expect to # see useful results if you use the PyMOLMover keep_history option, the large # number of intermediates will slow processing to a halt # d. convert the best structure (lowest scoring) into fullatom by: # -recovering the best (centroid) structure (lowest scoring), mc.recover_low(p) # loads mc's lowest scoring pose into p # -switching the ResidueTypeSet to fullatom (from centroid), to_fullatom.apply(p) # -recovering the original sidechain conformations, recover_sidechains.apply(p) # -and packing the result (since the backbone conformation has changed) pack.apply(p) pymov.apply(p) p.pdb_info().name(job_output + '_' + str(counter) + '_fa') # high-resolution refinement: #### this section may change if you intend to use multiple loops or #### alter the sampling method for high resolution refinement # e. apply the LoopMover_Refine_CCD loop_refine.apply(p) # f. output the decoy (pose result from this trajectory) # include the loop RMSD (Lrsmd) # -output a PDB file using the PyJobDistributor lrms = protocols.loops.loop_rmsd(p, starting_p, sample_loops, True) jd.additional_decoy_info = ' Lrmsd: ' + str(lrms) jd.output_decoy(p) # -export the structure to PyMOL pymov.apply(p) pymov.send_energy(p)
) # create_score_function_ws_patch( 'standard', 'score12' ) pymol = PyMOLMover() # If Pymol server is running, centroid stage will display loop_begin = 145 loop_end = 155 loop_cut = 150 my_loop = protocols.loops.Loop(loop_begin, loop_end, loop_cut) my_loops = protocols.loops.Loops() my_loops.add_loop(my_loop) print(my_loop) protocols.loops.set_single_loop_fold_tree(p, my_loop) movemap = MoveMap() movemap.set_bb_true_range(loop_begin, loop_end) movemap.set_chi(True) print(p.fold_tree()) print("setting up movers") # use the KinematicMover explicitly in centroid stage kic_mover = KinematicMover() #centroid/fullatom conversion movers to_centroid = protocols.simple_moves.SwitchResidueTypeSetMover('centroid') to_fullatom = protocols.simple_moves.SwitchResidueTypeSetMover('fa_standard') recover_sidechains = protocols.simple_moves.ReturnSidechainMover(starting_p) #set up sidechain packer movers task_pack = core.pack.task.TaskFactory.create_packer_task(starting_p)
movemap.set_bb(False) movemap.set_bb(50, True) movemap.set_bb(51, True) print( movemap ) small_mover.apply(test) shear_mover.apply(test2) pmm.apply(test) pmm.apply(test2) # Minimization Moves min_mover = MinMover() mm4060 = MoveMap() mm4060.set_bb_true_range(40, 60) scorefxn = create_score_function("ref2015") min_mover.movemap(mm4060) min_mover.score_function(scorefxn) # Commenting out for now because this lead to seg-fault in debug builds # AddPyMOLObserver(test2, True) min_mover.apply(test2) print( min_mover ) # Monte Carlo Object mc = MonteCarlo(test, scorefxn, kT)