示例#1
0
    def test_Kernel_Smoother_tabular(self):
        point_array = np.array(self.points)
        bbox = [[0, 0], [45, 45]]
        dfa = self.dfa
        sf = sm.Spatial_Filtering(bbox, point_array, dfa.e, dfa.b, 2, 2, r=30)

        np.testing.assert_allclose(sf.r, self.sf_exp, rtol=RTOL, atol=ATOL)

        dfa['geometry'] = self.points
        sf = sm.Spatial_Filtering.by_col(dfa, 'e', 'b', 3, 3, r=30)
        r_answer = np.array([
            0.07692308, 0.07213115, 0.07213115, 0.07692308, 0.07692308,
            0.07692308, 0.07692308, 0.07692308, 0.07692308
        ])
        x_answer = np.array(
            [10.0, 10.0, 10.0, 20.0, 20.0, 20.0, 30.0, 30.0, 30.0])
        y_answer = np.array([
            10.000000, 16.666667, 23.333333, 10.000000, 16.666667, 23.333333,
            10.000000, 16.666667, 23.333333
        ])
        columns = [
            'e-b_spatial_filtering_{}'.format(name)
            for name in ['X', 'Y', 'R']
        ]

        for col, answer in zip(columns, [x_answer, y_answer, r_answer]):
            np.testing.assert_allclose(sf[col].values,
                                       answer,
                                       rtol=RTOL,
                                       atol=ATOL)
示例#2
0
 def test_Spatial_Filtering(self):
     points = np.array(self.points)
     bbox = [[0, 0], [45, 45]]
     sf = sm.Spatial_Filtering(bbox, points, self.e, self.b, 2, 2, r=30)
     exp = [0.11111111, 0.11111111, 0.20000000000000001, 0.085106379999999995,
            0.076923080000000005, 0.05789474, 0.052173909999999997, 0.066666669999999997, 0.04117647]
     self.assertEqual(list(sf.r.round(8)), exp)
示例#3
0
 def test_Spatial_Filtering(self):
     points = np.array(self.points)
     bbox = [[0, 0], [45, 45]]
     sf = sm.Spatial_Filtering(bbox, points, self.e, self.b, 2, 2, r=30)
     np.testing.assert_allclose(sf.r, self.sf_exp, rtol=RTOL, atol=ATOL)