def _adjust_ts_axis(ax, inps): ax.tick_params(which='both', direction='in', labelsize=inps.font_size, bottom=True, top=True, left=True, right=True) ax = pp.auto_adjust_xaxis_date(ax, inps.yearList, fontsize=inps.font_size)[0] ax.set_xlabel('Time [years]', fontsize=inps.font_size) ax.set_ylabel('Displacement [{}]'.format(inps.disp_unit), fontsize=inps.font_size) ax.set_ylim(inps.ylim) return ax
def plot_bar4date_rms(inps): inps.figName = os.path.splitext(inps.rmsFile)[0] + '.pdf' if ut.update_file(inps.figName, [inps.exDateFile, inps.refDateFile, inps.template_file], check_readable=False): if inps.fig_size: fig = plt.figure(figsize=inps.fig_size) else: fig = plt.figure() ax = fig.add_subplot(111) font_size = 12 dates, datevector = ptime.date_list2vector(inps.dateList) try: bar_width = ut.most_common(np.diff(dates).tolist()) * 3 / 4 except: bar_width = np.min(np.diff(dates).tolist()) * 3 / 4 x_list = [i - bar_width / 2 for i in dates] inps.rmsList = [i * 1000. for i in inps.rmsList] min_rms = inps.min_rms * 1000. # Plot all dates ax.bar(x_list, inps.rmsList, bar_width.days) # Plot reference date ax.bar(x_list[inps.refDateIndex], inps.rmsList[inps.refDateIndex], bar_width.days, label='Reference date') # Plot exclude dates if inps.exIdxList: ex_x_list = [x_list[i] for i in inps.exIdxList] inps.exRmsList = [inps.rmsList[i] for i in inps.exIdxList] ax.bar(ex_x_list, inps.exRmsList, bar_width.days, color='darkgray', label='Exclude date(s)') # Plot min_rms line ax, xmin, xmax = pp.auto_adjust_xaxis_date( ax, datevector, font_size, every_year=inps.tick_year_num) ax.plot(np.array([xmin, xmax]), np.array([min_rms, min_rms]), '--k') # axis format ax = pp.auto_adjust_yaxis(ax, inps.rmsList + [min_rms], font_size, ymin=0.0) ax.set_xlabel('Time [years]', fontsize=font_size) ax.set_ylabel('Root Mean Square [mm]', fontsize=font_size) ax.yaxis.set_ticks_position('both') ax.tick_params(labelsize=font_size) plt.legend(fontsize=font_size) # save figure fig.savefig(inps.figName, bbox_inches='tight', transparent=True) print('save figure to file: ' + inps.figName) return inps
def main(iargs=None): inps = cmd_line_parse(iargs) print('\n*************** Spatial Average ******************') mean_list, date_list = ut.spatial_average(inps.file, datasetName=inps.datasetName, maskFile=inps.mask_file, saveList=True) atr = readfile.read_attribute(inps.file) k = atr['FILE_TYPE'] if inps.disp_fig and k == 'timeseries': dates, datevector = ptime.date_list2vector(date_list) # plot fig = plt.figure() ax = fig.add_subplot(111) ax.plot(dates, mean_list, '-o')#, lw=2, ms=16, alpha=0.7) #, mfc='crimson') ax.set_title('Spatial Average', fontsize=12) ax = pp.auto_adjust_xaxis_date(ax, datevector)[0] ax.set_xlabel('Time [years]', fontsize=12) ax.set_ylabel('Mean', fontsize=12) plt.show() return
def update_timeseries(ax_ts, y, x): """Plot point time series displacement at pixel [y, x]""" d_ts = read_timeseries_yx( inps.timeseries_file, y, x, ref_yx=inps.ref_yx) * inps.unit_fac # for date in dateList: # d = h5[k].get(date)[y,x] # if inps.ref_yx: # d -= h5[k].get(date)[inps.ref_yx[0], inps.ref_yx[1]] # d_ts.append(d*inps.unit_fac) if inps.zero_first: d_ts -= d_ts[inps.zero_idx] ax_ts.cla() if inps.error_file: ax_ts = plot_timeseries_errorbar(ax_ts, d_ts, inps) else: ax_ts = plot_timeseries_scatter(ax_ts, d_ts, inps) if inps.ylim: ax_ts.set_ylim(inps.ylim) for tick in ax_ts.yaxis.get_major_ticks(): tick.label.set_fontsize(inps.font_size) # Title title_ts = 'Y = %d, X = %d' % (y, x) try: lat = ullat + y * lat_step lon = ullon + x * lon_step title_ts += ', lat = %.4f, lon = %.4f' % (lat, lon) except: pass if inps.disp_title: ax_ts.set_title(title_ts) ax_ts = pp.auto_adjust_xaxis_date(ax_ts, inps.yearList, fontSize=inps.font_size)[0] ax_ts.set_xlabel('Time', fontsize=inps.font_size) ax_ts.set_ylabel('Displacement [%s]' % inps.disp_unit, fontsize=inps.font_size) fig_ts.canvas.draw() # Print to terminal print('\n---------------------------------------') print(title_ts) print(d_ts) # Slope estimation if inps.ex_date_list: inps.yearList_kept = [ inps.yearList[i] for i in range(date_num) if i not in inps.ex_idx_list ] d_ts_kept = [ d_ts[i] for i in range(date_num) if i not in inps.ex_idx_list ] d_slope = stats.linregress(np.array(inps.yearList_kept), np.array(d_ts_kept)) else: d_slope = stats.linregress(np.array(inps.yearList), np.array(d_ts)) print('linear velocity: %.2f +/- %.2f [%s/yr]' % (d_slope[0], d_slope[4], inps.disp_unit)) return d_ts
def plot_rms_bar(ax, date_list, rms, cutoff=3., font_size=12, tick_year_num=1, legend_loc='best', disp_legend=True, disp_side_plot=True, disp_thres_text=True, ylabel=r'Residual Phase $\hat \phi_{resid}$ RMS [mm]'): """ Bar plot Phase Residual RMS Parameters: ax : Axes object date_list : list of string in YYYYMMDD format rms : 1D np.array of float for RMS value in mm cutoff : cutoff value of MAD outlier detection tick_year_num : int, number of years per major tick legend_loc : 'upper right' or (0.5, 0.5) Returns: ax : Axes object """ dates, datevector = ptime.date_list2vector(date_list) try: bar_width = min(ut.most_common(np.diff(dates).tolist(), k=2)) * 3 / 4 except: bar_width = np.min(np.diff(dates).tolist()) * 3 / 4 rms = np.array(rms) # Plot all dates ax.bar(dates, rms, bar_width.days, color=pp.mplColors[0]) # Plot reference date ref_idx = np.argmin(rms) ax.bar(dates[ref_idx], rms[ref_idx], bar_width.days, color=pp.mplColors[1], label='Reference date') # Plot exclude dates rms_threshold = ut.median_abs_deviation_threshold(rms, center=0., cutoff=cutoff) ex_idx = rms > rms_threshold if not np.all(ex_idx == False): ax.bar(dates[ex_idx], rms[ex_idx], bar_width.days, color='darkgray', label='Exclude date') # Plot rms_threshold line (ax, xmin, xmax) = pp.auto_adjust_xaxis_date(ax, datevector, font_size, every_year=tick_year_num) ax.plot(np.array([xmin, xmax]), np.array([rms_threshold, rms_threshold]), '--k', label='RMS threshold') # axis format ax = pp.auto_adjust_yaxis(ax, np.append(rms, rms_threshold), font_size, ymin=0.0) ax.set_xlabel('Time [years]', fontsize=font_size) ax.set_ylabel(ylabel, fontsize=font_size) ax.tick_params(which='both', direction='in', labelsize=font_size, bottom=True, top=True, left=True, right=True) # 2nd axes for circles if disp_side_plot: divider = make_axes_locatable(ax) ax2 = divider.append_axes("right", "10%", pad="2%") ax2.plot(np.ones(rms.shape, np.float32) * 0.5, rms, 'o', mfc='none', color=pp.mplColors[0]) ax2.plot(np.ones(rms.shape, np.float32)[ref_idx] * 0.5, rms[ref_idx], 'o', mfc='none', color=pp.mplColors[1]) if not np.all(ex_idx == False): ax2.plot(np.ones(rms.shape, np.float32)[ex_idx] * 0.5, rms[ex_idx], 'o', mfc='none', color='darkgray') ax2.plot(np.array([0, 1]), np.array([rms_threshold, rms_threshold]), '--k') ax2.set_ylim(ax.get_ylim()) ax2.set_xlim([0, 1]) ax2.tick_params(which='both', direction='in', labelsize=font_size, bottom=True, top=True, left=True, right=True) ax2.get_xaxis().set_ticks([]) ax2.get_yaxis().set_ticklabels([]) if disp_legend: ax.legend(loc=legend_loc, frameon=False, fontsize=font_size) # rms_threshold text if disp_thres_text: ymin, ymax = ax.get_ylim() yoff = (ymax - ymin) * 0.1 if (rms_threshold - ymin) > 0.5 * (ymax - ymin): yoff *= -1. ax.annotate('Median Abs Dev * {}'.format(cutoff), xy=(xmin + (xmax - xmin) * 0.05, rms_threshold + yoff), color='k', xycoords='data', fontsize=font_size) return ax
def update_timeseries(y, x, plot_number, data_only=False): '''Plot point time series displacement at pixel [y, x] Inputs: y : int, y coordinate to update x : int, x coordinate to update plot_number : int, plot number (1/2) to update data_only : bool, compute and return data only, or set remainder of plot variables Outputs: d_ts : [float], timeseries data at x, y point ''' global fig_ts, ax_ts, second_plot_axis, inps, dateList, h5, k, inps, inps.tims, fig_v, inps.num_date, d_ts set_scatter_coords(plot_number, x, y) if plot_number == 1: axis = ax_ts else: axis = second_plot_axis d_ts = [] for i, date in enumerate(dateList): d = h5['timeseries'][i][y, x] if inps.ref_yx: d -= h5['timeseries'][i][inps.ref_yx[0], inps.ref_yx[1]] d_ts.append(d * inps.unit_fac) if inps.zero_first: d_ts -= d_ts[inps.zero_idx] # Returns computed data without setting any plot or figure parameters if data_only: return d_ts axis.cla() if inps.error_file: axis = plot_timeseries_errorbar(ax_ts, d_ts, inps) else: axis, scatter = plot_timeseries_scatter(axis, d_ts, inps, plot_number) scatter.set_label('2') if inps.ylim: axis.set_ylim(inps.ylim) for tick in axis.yaxis.get_major_ticks(): tick.label.set_fontsize(inps.font_size) # Title title_ts = set_axis_title(x, y) if inps.disp_title: axis.set_title(title_ts) axis = pp.auto_adjust_xaxis_date(axis, inps.tims, fontSize=inps.font_size)[0] axis.set_xlabel('Time', fontsize=inps.font_size) axis.set_ylabel('Displacement [%s]' % inps.disp_unit, fontsize=inps.font_size) fig_v.canvas.draw() # Print to terminal print('\n---------------------------------------') print(title_ts) print(d_ts) # Slope estimation estimate_slope() return d_ts