def run_hyperpolarizing_learning_subjects(subj_ids, stim_types, coherence_levels, trials_per_condition): (p_dcs, i_dcs) = (-stim_intensity_max, 0.5*stim_intensity_max) conditions= OrderedDict({'training': (simulation_params(ntrials=trials_per_condition, plasticity=True, p_dcs=p_dcs, i_dcs=i_dcs, dcs_start_time=0*second, dcs_end_time=4*second), True, coherence_levels)}) conditions['testing'] = (simulation_params(ntrials=trials_per_condition), True, coherence_levels) print conditions.keys() print p_dcs, i_dcs # Run subjects run_virtual_subjects(subj_ids, conditions, '/home/jeff/projects/pySBI/data/stdp_maxstim_2_plasticity_14_40_fixed/final/1/hyperpolarizing/final_test_final', '/home/jeff/projects/pySBI/data/rerw/fitted_behavioral_params.h5')
def __init__(self, subj_id, wta_params=default_params(), pyr_params=pyr_params(), inh_params=inh_params(), plasticity_params=plasticity_params(), sim_params=simulation_params()): self.subj_id = subj_id self.wta_params = wta_params self.pyr_params = pyr_params self.inh_params = inh_params self.plasticity_params = plasticity_params self.sim_params = sim_params self.simulation_clock = Clock(dt=self.sim_params.dt) self.input_update_clock = Clock(dt=1 / (self.wta_params.refresh_rate / Hz) * second) self.background_input = PoissonGroup(self.wta_params.background_input_size, rates=self.wta_params.background_freq, clock=self.simulation_clock) self.task_inputs = [] for i in range(self.wta_params.num_groups): self.task_inputs.append(PoissonGroup(self.wta_params.task_input_size, rates=self.wta_params.task_input_resting_rate, clock=self.simulation_clock)) # Create WTA network self.wta_network = WTANetworkGroup(params=self.wta_params, background_input=self.background_input, task_inputs=self.task_inputs, pyr_params=self.pyr_params, inh_params=self.inh_params, plasticity_params=self.plasticity_params, clock=self.simulation_clock) # Create network monitor self.wta_monitor = WTAMonitor(self.wta_network, None, None, self.sim_params, record_lfp=False, record_voxel=False, record_neuron_state=False, record_spikes=False, record_firing_rate=True, record_inputs=True, record_connections=None, save_summary_only=False, clock=self.simulation_clock) # Create Brian network and reset clock self.net = Network(self.background_input, self.task_inputs, self.wta_network, self.wta_network.connections.values(), self.wta_monitor.monitors.values())
def post_wta_jobs(nodes, p_b_e_range, p_x_e_range, p_e_e_range, p_e_i_range, p_i_i_range, p_i_e_range, num_trials, muscimol_amount=0 * nS, injection_site=0, start_nodes=True): sim_params = simulation_params() sim_params.muscimol_amount = muscimol_amount sim_params.injection_site = injection_site input_sum = 40.0 launcher = Launcher(nodes) if start_nodes: launcher.set_application_script( os.path.join(SRC_DIR, 'sh/ezrcluster-application-script.sh')) launcher.start_nodes() contrast_range = [0.0, 0.0625, 0.125, 0.25, 0.5, 1.0] for p_b_e in p_b_e_range: for p_x_e in p_x_e_range: for p_e_e in p_e_e_range: for p_e_i in p_e_i_range: for p_i_i in p_i_i_range: for p_i_e in p_i_e_range: wta_params = default_params() wta_params.p_b_e = p_b_e wta_params.p_x_e = p_x_e wta_params.p_e_e = p_e_e wta_params.p_e_i = p_e_i wta_params.p_i_i = p_i_i wta_params.p_i_e = p_i_e for i, contrast in enumerate(contrast_range): inputs = np.zeros(2) inputs[0] = (input_sum * (contrast + 1.0) / 2.0) inputs[1] = input_sum - inputs[0] for t in range(num_trials): np.random.shuffle(inputs) cmds, log_file_template, out_file = get_wta_cmds( wta_params, inputs, sim_params, contrast, t, record_lfp=True, record_voxel=True, record_neuron_state=False, record_firing_rate=True, record_spikes=True) launcher.add_job( cmds, log_file_template=log_file_template, output_file=out_file)
def launch_virtual_subject_processes(nodes, mu_0, virtual_subj_ids, behavioral_param_file, trials, stim_conditions, start_nodes=True): """ nodes = nodes to run simulation on data_dir = directory containing subject data num_real_subjects = number of real subjects num_virtual_subjects = number of virtual subjects to run behavioral_param_file = file containing subject fitted behavioral parameters start_nodes = whether or not to start nodes """ # Setup launcher launcher=Launcher(nodes) wta_params=default_params() wta_params.mu_0=mu_0 wta_params.p_a=wta_params.mu_0/100.0 wta_params.p_b=wta_params.p_a # Get subject alpha and beta values f = h5py.File(behavioral_param_file) control_group=f['control'] alpha_vals=np.array(control_group['alpha']) beta_vals=np.array(control_group['beta']) # For each virtual subject for virtual_subj_id in virtual_subj_ids: # Sample beta from subject distribution - don't use subjects with high alpha beta_hist,beta_bins=np.histogram(beta_vals[np.where(alpha_vals<.99)[0]], density=True) bin_width=beta_bins[1]-beta_bins[0] beta_bin=np.random.choice(beta_bins[:-1], p=beta_hist*bin_width) beta=beta_bin+np.random.rand()*bin_width wta_params.background_freq=(beta-161.08)/-.17 contrast_range=[0.0, .032, .064, .096, .128, .256, .512] for i,contrast in enumerate(contrast_range): inputs=np.array([wta_params.mu_0+wta_params.p_a*contrast*100.0, wta_params.mu_0-wta_params.p_b*contrast*100.0]) for t in range(trials): np.random.shuffle(inputs) for stim_condition,stim_values in stim_conditions.iteritems(): sim_params=simulation_params() sim_params.p_dcs=stim_values[0] sim_params.i_dcs=stim_values[1] cmds,log_file_template,out_file=get_wta_cmds(wta_params, inputs, sim_params, contrast, t, record_lfp=True, record_voxel=True, record_neuron_state=False, record_firing_rate=True, record_spikes=True, save_summary_only=False, e_desc='virtual_subject.%d.%s' % (virtual_subj_id,stim_condition)) launcher.add_batch_job(cmds, log_file_template=log_file_template, output_file=out_file) launcher.post_jobs() if start_nodes: launcher.set_application_script(os.path.join(SRC_DIR, 'sh/ezrcluster-application-script.sh')) launcher.start_nodes()
def run_nostim_training_subjects(subj_ids, stim_types, coherence_levels, trials_per_condition): """ Run subjects with no stimulation during training - runs baseline without stim, training without stim, and test without stim nsubjects = number of subjects to simulation coherence_levels = number of coherence levels to use """ conditions = OrderedDict({'baseline': (simulation_params(ntrials=trials_per_condition), True, coherence_levels)}) # conditions = OrderedDict({'training': (simulation_params(ntrials=trials_per_condition, plasticity=True), True, coherence_levels)}) conditions['training']= (simulation_params(ntrials=trials_per_condition, plasticity=True), True, coherence_levels) # conditions = OrderedDict({'training': (simulation_params(ntrials=trials_per_condition, plasticity=True), True, coherence_levels)}) conditions['testing'] = (simulation_params(ntrials=trials_per_condition), True, coherence_levels) # run baseline with stim # for stim in stim_types: # p_dcs, i_dcs = stim_types.get(stim) # conditions['baseline_%s' % stim] = (simulation_params(ntrials=trials_per_condition, plasticity=False, p_dcs=p_dcs, i_dcs=i_dcs, dcs_start_time=0*second, dcs_end_time=4*second), True, coherence_levels) print conditions.keys() # Run subject run_virtual_subjects(subj_ids, conditions, '/home/jeff/projects/pySBI/data/stdp_maxstim_2_plasticity_14_40_fixed/final/6/control/final_test_final', '/home/jeff/projects/pySBI/data/rerw/fitted_behavioral_params.h5')
def post_wta_jobs(nodes, p_b_e_range, p_x_e_range, p_e_e_range, p_e_i_range, p_i_i_range, p_i_e_range, num_trials, muscimol_amount=0*nS, injection_site=0, start_nodes=True): sim_params=simulation_params() sim_params.muscimol_amount=muscimol_amount sim_params.injection_site=injection_site input_sum=40.0 launcher=Launcher(nodes) if start_nodes: launcher.set_application_script(os.path.join(SRC_DIR, 'sh/ezrcluster-application-script.sh')) launcher.start_nodes() contrast_range=[0.0, 0.0625, 0.125, 0.25, 0.5, 1.0] for p_b_e in p_b_e_range: for p_x_e in p_x_e_range: for p_e_e in p_e_e_range: for p_e_i in p_e_i_range: for p_i_i in p_i_i_range: for p_i_e in p_i_e_range: wta_params=default_params() wta_params.p_b_e=p_b_e wta_params.p_x_e=p_x_e wta_params.p_e_e=p_e_e wta_params.p_e_i=p_e_i wta_params.p_i_i=p_i_i wta_params.p_i_e=p_i_e for i,contrast in enumerate(contrast_range): inputs=np.zeros(2) inputs[0]=(input_sum*(contrast+1.0)/2.0) inputs[1]=input_sum-inputs[0] for t in range(num_trials): np.random.shuffle(inputs) cmds,log_file_template,out_file=get_wta_cmds(wta_params, inputs, sim_params, contrast, t, record_lfp=True, record_voxel=True, record_neuron_state=False, record_firing_rate=True, record_spikes=True) launcher.add_job(cmds, log_file_template=log_file_template, output_file=out_file)
def run_rl_simulation(mat_file, alpha=0.4, beta=5.0, background_freq=None, p_dcs=0*pA, i_dcs=0*pA, dcs_start_time=0*ms, output_file=None): mat = scipy.io.loadmat(mat_file) prob_idx=-1 mags_idx=-1 for idx,(dtype,o) in enumerate(mat['store']['dat'][0][0].dtype.descr): if dtype=='probswalk': prob_idx=idx elif dtype=='mags': mags_idx=idx prob_walk=mat['store']['dat'][0][0][0][0][prob_idx] mags=mat['store']['dat'][0][0][0][0][mags_idx] prob_walk=prob_walk.astype(np.float32, copy=False) mags=mags.astype(np.float32, copy=False) mags /= 100.0 wta_params=default_params() wta_params.input_var=0*Hz sim_params=simulation_params() sim_params.p_dcs=p_dcs sim_params.i_dcs=i_dcs sim_params.dcs_start_time=dcs_start_time exp_rew=np.array([0.5, 0.5]) if background_freq is None: background_freq=(beta-161.08)/-.17 wta_params.background_freq=background_freq trials=prob_walk.shape[1] sim_params.ntrials=trials vals=np.zeros(prob_walk.shape) choice=np.zeros(trials) rew=np.zeros(trials) rts=np.zeros(trials) inputs=np.zeros(prob_walk.shape) if output_file is not None: f = h5py.File(output_file, 'w') f.attrs['alpha']=alpha f.attrs['beta']=beta f.attrs['mat_file']=mat_file f_sim_params=f.create_group('sim_params') for attr, value in sim_params.iteritems(): f_sim_params.attrs[attr] = value f_network_params=f.create_group('network_params') for attr, value in wta_params.iteritems(): f_network_params.attrs[attr] = value f_pyr_params=f.create_group('pyr_params') for attr, value in pyr_params.iteritems(): f_pyr_params.attrs[attr] = value f_inh_params=f.create_group('inh_params') for attr, value in inh_params.iteritems(): f_inh_params.attrs[attr] = value for trial in range(sim_params.ntrials): print('Trial %d' % trial) vals[:,trial]=exp_rew ev=vals[:,trial]*mags[:,trial] inputs[0,trial]=ev[0] inputs[1,trial]=ev[1] inputs[:,trial]=40.0+40.0*inputs[:,trial] trial_monitor=run_wta(wta_params, inputs[:,trial], sim_params, record_lfp=False, record_voxel=False, record_neuron_state=False, record_spikes=True, record_firing_rate=True, record_inputs=False, plot_output=False) e_rates = [] for i in range(wta_params.num_groups): e_rates.append(trial_monitor.monitors['excitatory_rate_%d' % i].smooth_rate(width=5 * ms, filter='gaussian')) i_rates = [trial_monitor.monitors['inhibitory_rate'].smooth_rate(width=5 * ms, filter='gaussian')] if output_file is not None: trial_group=f.create_group('trial %d' % trial) trial_group['e_rates'] = np.array(e_rates) trial_group['i_rates'] = np.array(i_rates) rt,decision_idx=get_response_time(e_rates, sim_params.stim_start_time, sim_params.stim_end_time, upper_threshold=wta_params.resp_threshold, lower_threshold=None, dt=sim_params.dt) reward=0.0 if decision_idx>=0 and np.random.random()<=prob_walk[decision_idx,trial]: reward=1.0 exp_rew[decision_idx]=(1.0-alpha)*exp_rew[decision_idx]+alpha*reward choice[trial]=decision_idx rts[trial]=rt rew[trial]=reward param_ests,prop_correct=fit_behavior(prob_walk, mags, rew, choice) if output_file is not None: f.attrs['est_alpha']=param_ests[0] f.attrs['est_beta']=param_ests[1] f.attrs['prop_correct']=prop_correct f['prob_walk']=prob_walk f['mags']=mags f['rew']=rew f['choice']=choice f['vals']=vals f['inputs']=inputs f['rts']=rts f.close()
session_monitor.plot() else: subject.wta_monitor.plot() plt.show() if __name__ == "__main__": # Trials per condition trials_per_condition = 100 # Max stimulation intensity stim_intensity_max = 0.75 * pA # Stimulation conditions conditions = { "control": simulation_params( ntrials=trials_per_condition, trial_duration=3 * second, stim_start_time=1 * second, stim_end_time=2 * second, ), "depolarizing": simulation_params( ntrials=trials_per_condition, trial_duration=3 * second, stim_start_time=1 * second, stim_end_time=2 * second, p_dcs=stim_intensity_max, i_dcs=-0.5 * stim_intensity_max, dcs_start_time=0 * second, dcs_end_time=3 * second, ), "hyperpolarizing": simulation_params( ntrials=trials_per_condition, trial_duration=3 * second,
def launch_control_virtual_subject_processes(nodes, mu_0, virtual_subj_ids, behavioral_param_file, trials, stim_gains=[8,6,4,2,1,0.5,0.25], start_nodes=True): """ Launch stimulation intensity simulations with DCS applied only to pyramidal population nodes = nodes to run simulation on data_dir = directory containing subject data num_real_subjects = number of real subjects num_virtual_subjects = number of virtual subjects to run behavioral_param_file = file containing subject fitted behavioral parameters start_nodes = whether or not to start nodes """ # Setup launcher launcher=Launcher(nodes) # Get subject alpha and beta values f = h5py.File(behavioral_param_file) control_group=f['control'] alpha_vals=np.array(control_group['alpha']) beta_vals=np.array(control_group['beta']) # For each virtual subject for virtual_subj_id in virtual_subj_ids: wta_params=default_params() wta_params.mu_0=mu_0 wta_params.p_a=mu_0/100.0 wta_params.p_b=wta_params.p_a # Sample beta from subject distribution - don't use subjects with high alpha beta_hist,beta_bins=np.histogram(beta_vals[np.where(alpha_vals<.99)[0]], density=True) bin_width=beta_bins[1]-beta_bins[0] beta_bin=np.random.choice(beta_bins[:-1], p=beta_hist*bin_width) beta=beta_bin+np.random.rand()*bin_width wta_params.background_freq=(beta-161.08)/-.17 contrast_range=[0.0, .032, .064, .128, .256, .512] for i,contrast in enumerate(contrast_range): inputs=np.zeros(2) inputs[0]=wta_params.mu_0+wta_params.p_a*contrast*100.0 inputs[1]=wta_params.mu_0-wta_params.p_b*contrast*100.0 for t in range(trials): np.random.shuffle(inputs) for idx, stim_gain in enumerate(stim_gains): sim_params=simulation_params() sim_params.p_dcs=stim_gain*pA cmds,log_file_template,out_file=get_wta_cmds(wta_params, inputs, sim_params, contrast, t, record_lfp=True, record_voxel=True, record_neuron_state=False, record_firing_rate=True, record_spikes=True, save_summary_only=False, e_desc='virtual_subject.%d.anode' % virtual_subj_id) launcher.add_batch_job(cmds, log_file_template=log_file_template, output_file=out_file) sim_params=simulation_params() sim_params.p_dcs=-stim_gain*pA cmds,log_file_template,out_file=get_wta_cmds(wta_params, inputs, sim_params, contrast, t, record_lfp=True, record_voxel=True, record_neuron_state=False, record_firing_rate=True, record_spikes=True, save_summary_only=False, e_desc='virtual_subject.%d.cathode' % virtual_subj_id) launcher.add_batch_job(cmds, log_file_template=log_file_template, output_file=out_file) if idx==0: sim_params=simulation_params() cmds,log_file_template,out_file=get_wta_cmds(wta_params, inputs, sim_params, contrast, t, record_lfp=True, record_voxel=True, record_neuron_state=False, record_firing_rate=True, record_spikes=True, save_summary_only=False, e_desc='virtual_subject.%d.control' % virtual_subj_id) launcher.add_batch_job(cmds, log_file_template=log_file_template, output_file=out_file) launcher.post_jobs() if start_nodes: launcher.set_application_script(os.path.join(SRC_DIR, 'sh/ezrcluster-application-script.sh')) launcher.start_nodes()