示例#1
0
Default AGF2 corresponds to the AGF2(1,0) method outlined in the papers:
  - O. J. Backhouse, M. Nusspickel and G. H. Booth, J. Chem. Theory Comput., 16, 1090 (2020).
  - O. J. Backhouse and G. H. Booth, J. Chem. Theory Comput., 16, 6294 (2020).
'''

from pyscf import gto, scf, agf2, mp

mol = gto.M(atom='O 0 0 0; H 0 0 1; H 0 1 0', basis='cc-pvdz')

mf = scf.RHF(mol)
mf.conv_tol = 1e-12
mf.run()

# Run an AGF2 calculation
gf2 = agf2.AGF2(mf)
gf2.conv_tol = 1e-7
# Freeze two orbitals (four electrons)
gf2.frozen = 2
gf2.run()

# Print the first 3 ionization potentials
gf2.ipagf2(nroots=3)

# Print the first 3 electron affinities
gf2.eaagf2(nroots=3)

# Check that a high-moment calculation is equal to MP2 in the first iteration for frozen core example
mol = gto.M(atom='H 0 0 0; Li 0 0 1', basis='cc-pvdz')

mf = scf.RHF(mol)
示例#2
0
#
'''
A simple example of restricted AGF2. AGF2 will compute correlation energies, one-particle
properties and charged excitations / energy levels via an iterated, renormalized perturbation
theory.

Default AGF2 corresponds to the AGF2(1,0) method outlined in the papers:
  - O. J. Backhouse, M. Nusspickel and G. H. Booth, J. Chem. Theory Comput., 16, 1090 (2020).
  - O. J. Backhouse and G. H. Booth, J. Chem. Theory Comput., 16, 6294 (2020).
'''

from pyscf import gto, scf, agf2

mol = gto.M(atom='O 0 0 0; H 0 0 1; H 0 1 0', basis='cc-pvdz')

mf = scf.RHF(mol)
mf.conv_tol = 1e-12
mf.run()

# Run an AGF2 calculation
gf2 = agf2.AGF2(mf)
gf2.conv_tol = 1e-7
gf2.run(verbose=4)

# Print the first 3 ionization potentials
# Note that there is no additional cost to write out larger numbers of excitations.
gf2.ipagf2(nroots=3)

# Print the first 3 electron affinities
gf2.eaagf2(nroots=3)
示例#3
0
  - O. J. Backhouse, M. Nusspickel and G. H. Booth, J. Chem. Theory Comput., 16, 1090 (2020).
  - O. J. Backhouse and G. H. Booth, J. Chem. Theory Comput., 16, 6294 (2020).
'''

import numpy
from pyscf import gto, scf, agf2, adc

mol = gto.M(atom='O 0 0 0; H 0 0 1; H 0 1 0', basis='cc-pvdz', verbose=0)

mf = scf.RHF(mol)
mf.conv_tol = 1e-12
mf.run()

# We can build the compressed ADC(2) self-energy as the zeroth iteration
# of AGF2, taking only the space corresponding to 1p coupling to 2p1h
gf2 = agf2.AGF2(mf)
se = gf2.build_se()
se = se.get_occupied()  # 2p1h/1p2h -> 2p1h
se.coupling = se.coupling[:gf2.nocc]  # 1p/1h -> 1p

# Use the adc module to get the 1p space from ADC(2). In AGF2, this is the
# bare Fock matrix, and is relaxed through the self-consistency. We can use
# the ADC 1p space instead.
adc2 = adc.radc.RADCIP(adc.ADC(mf).run())
h_1p = adc2.get_imds()

# Find the eigenvalues of the self-energy in the 'extended Fock matrix'
# format, which are the ionization potentials:
e_ip = se.eig(h_1p)[0]
print('IP-ADC(2) using the AGF2 solver (with renormalization):')
print(-e_ip[-1])
示例#4
0
        else:
            nmom_o = nmom_v = self.nmom[1]

        se_occ = self.build_se_part(eri, gf_occ, gf_vir, nmom_o, **facs)
        se_vir = self.build_se_part(eri, gf_vir, gf_occ, nmom_v, **facs)

        se = agf2.aux.combine(se_occ, se_vir)
        se = se.compress(phys=fock, n=(self.nmom[0], None))

        if se_prev is not None and self.damping != 0.0:
            se.coupling *= np.sqrt(1.0-self.damping)
            se_prev.coupling *= np.sqrt(self.damping)
            se = aux.combine(se, se_prev)
            se = se.compress(n=self.nmom)

        return se



if __name__ == '__main__':
    from pyscf import gto, scf, agf2

    mol = gto.M(atom='O 0 0 0; O 0 0 1', basis='6-31g', verbose=4)
    rhf = scf.RHF(mol).run()
    
    gf2_a = agf2.AGF2(rhf, nmom=(2,3)).run()

    gf2_b = RAGF2(rhf, nmom=(2,3)).run()


示例#5
0
    for i in range(1, nblock + 1):
        m[i] = c[i, 1, i]

    return m, b


if __name__ == '__main__':
    from pyscf import gto, scf, mp, agf2

    nmom = 5

    mol = gto.M(atom='O 0 0 0; O 0 0 1', basis='cc-pvdz', verbose=False)
    rhf = scf.RHF(mol).run()
    mp2 = mp.MP2(rhf).run()
    gf2 = agf2.AGF2(rhf, nmom=(None, None))

    se = gf2.build_se()

    t_occ = se.get_occupied().moment(range(2 * nmom + 2))
    t_vir = se.get_virtual().moment(range(2 * nmom + 2))

    se_occ = agf2.SelfEnergy(
        *build_from_tridiag(*block_lanczos(t_occ, nmom + 1)),
        chempot=se.chempot)
    se_vir = agf2.SelfEnergy(
        *build_from_tridiag(*block_lanczos(t_vir, nmom + 1)),
        chempot=se.chempot)
    se = agf2.aux.combine(se_occ, se_vir)

    e_mp2 = agf2.ragf2.energy_mp2(gf2, rhf.mo_energy, se)
示例#6
0
from pyscf import gto, scf, agf2, mp

mol = gto.M(atom='O 0 0 0; H 0 0 1; H 0 1 0', basis='6-31g')

mf = scf.RHF(mol)
mf.conv_tol = 1e-12
mf.run()

# Get the canonical MP2
mp2 = mp.MP2(mf)
mp2.run()

# We can use very high moment calculations to converge to traditional GF2 limit.
# We can also use the zeroth iteration to quantify the AGF2 error by comparison
# to the MP2 energy.
gf2_56 = agf2.AGF2(mf, nmom=(5,6))
gf2_56.build_se()
e_mp2 = gf2_56.energy_mp2()

print('Canonical MP2 Ecorr: ', mp2.e_corr)
print('AGF2(%s,%s) MP2 Ecorr: '%gf2_56.nmom, e_mp2)
print('Error: ', abs(mp2.e_corr - e_mp2))

# Run a high moment AGF2(5,6) calculation and compare to AGF2 (AGF2 as
# default in pyscf is technically AGF2(None,0)). See
# second reference for more details.
gf2_56.run()

gf2 = agf2.AGF2(mf)
gf2.run()