示例#1
0
 def nuc_grad_method(self):
     from pyscf.grad import rks as rks_grad
     return rks_grad.Gradients(self)
示例#2
0
    def test_get_vxc(self):
        mol = gto.Mole()
        mol.verbose = 0
        mol.atom = [['O', (0., 0., 0.)], [1, (0., -0.757, 0.587)],
                    [1, (0., 0.757, 0.587)]]
        mol.basis = '631g'
        mol.build()
        mf = dft.RKS(mol)
        mf.conv_tol = 1e-12
        mf.grids.radii_adjust = radi.becke_atomic_radii_adjust
        mf.scf()
        g = rks.Gradients(mf)
        g.grid_response = True
        g0 = g.kernel()
        dm0 = mf.make_rdm1()

        mol0 = gto.Mole()
        mol0.verbose = 0
        mol0.atom = [['O', (0., 0., -0.00001)], [1, (0., -0.757, 0.587)],
                     [1, (0., 0.757, 0.587)]]
        mol0.basis = '631g'
        mol0.build()
        mf0 = dft.RKS(mol0)
        mf0.grids.radii_adjust = radi.becke_atomic_radii_adjust
        mf0.conv_tol = 1e-12
        e0 = mf0.scf()

        denom = 1 / .00002 * lib.param.BOHR
        mol1 = gto.Mole()
        mol1.verbose = 0
        mol1.atom = [['O', (0., 0., 0.00001)], [1, (0., -0.757, 0.587)],
                     [1, (0., 0.757, 0.587)]]
        mol1.basis = '631g'
        mol1.build()
        mf1 = dft.RKS(mol1)
        mf1.grids.radii_adjust = radi.becke_atomic_radii_adjust
        mf1.conv_tol = 1e-12
        e1 = mf1.scf()
        self.assertAlmostEqual((e1 - e0) * denom, g0[0, 2], 6)

        # grids response have non-negligible effects for small grids
        grids = dft.gen_grid.Grids(mol)
        grids.atom_grid = (20, 86)
        grids.build(with_non0tab=False)
        grids0 = dft.gen_grid.Grids(mol0)
        grids0.atom_grid = (20, 86)
        grids0.build(with_non0tab=False)
        grids1 = dft.gen_grid.Grids(mol1)
        grids1.atom_grid = (20, 86)
        grids1.build(with_non0tab=False)
        xc = 'lda,'
        exc0 = dft.numint.nr_rks(mf0._numint, mol0, grids0, xc, dm0)[1]
        exc1 = dft.numint.nr_rks(mf1._numint, mol1, grids1, xc, dm0)[1]

        grids0_w = copy.copy(grids0)
        grids0_w.weights = grids1.weights
        grids0_c = copy.copy(grids0)
        grids0_c.coords = grids1.coords
        exc0_w = dft.numint.nr_rks(mf0._numint, mol0, grids0_w, xc, dm0)[1]
        exc0_c = dft.numint.nr_rks(mf1._numint, mol1, grids0_c, xc, dm0)[1]

        dexc_t = (exc1 - exc0) * denom
        dexc_c = (exc0_c - exc0) * denom
        dexc_w = (exc0_w - exc0) * denom
        self.assertAlmostEqual(dexc_t, dexc_c + dexc_w, 4)

        vxc = rks.get_vxc(mf._numint, mol, grids, xc, dm0)[1]
        ev1, vxc1 = rks.get_vxc_full_response(mf._numint, mol, grids, xc, dm0)
        p0, p1 = mol.aoslice_by_atom()[0][2:]
        exc1_approx = numpy.einsum('xij,ij->x', vxc[:, p0:p1], dm0[p0:p1]) * 2
        exc1_full = numpy.einsum('xij,ij->x', vxc1[:, p0:p1],
                                 dm0[p0:p1]) * 2 + ev1[0]
        self.assertAlmostEqual(dexc_t, exc1_approx[2], 2)
        self.assertAlmostEqual(dexc_t, exc1_full[2], 5)

        xc = 'pbe,'
        exc0 = dft.numint.nr_rks(mf0._numint, mol0, grids0, xc, dm0)[1]
        exc1 = dft.numint.nr_rks(mf1._numint, mol1, grids1, xc, dm0)[1]

        grids0_w = copy.copy(grids0)
        grids0_w.weights = grids1.weights
        grids0_c = copy.copy(grids0)
        grids0_c.coords = grids1.coords
        exc0_w = dft.numint.nr_rks(mf0._numint, mol0, grids0_w, xc, dm0)[1]
        exc0_c = dft.numint.nr_rks(mf1._numint, mol1, grids0_c, xc, dm0)[1]

        dexc_t = (exc1 - exc0) * denom
        dexc_c = (exc0_c - exc0) * denom
        dexc_w = (exc0_w - exc0) * denom
        self.assertAlmostEqual(dexc_t, dexc_c + dexc_w, 4)

        vxc = rks.get_vxc(mf._numint, mol, grids, xc, dm0)[1]
        ev1, vxc1 = rks.get_vxc_full_response(mf._numint, mol, grids, xc, dm0)
        p0, p1 = mol.aoslice_by_atom()[0][2:]
        exc1_approx = numpy.einsum('xij,ij->x', vxc[:, p0:p1], dm0[p0:p1]) * 2
        exc1_full = numpy.einsum('xij,ij->x', vxc1[:, p0:p1],
                                 dm0[p0:p1]) * 2 + ev1[0]
        self.assertAlmostEqual(dexc_t, exc1_approx[2], 2)
        self.assertAlmostEqual(dexc_t, exc1_full[2], 5)

        xc = 'pbe0'
        grids.radii_adjust = None
        grids0.radii_adjust = None
        grids1.radii_adjust = None
        exc0 = dft.numint.nr_rks(mf0._numint, mol0, grids0, xc, dm0)[1]
        exc1 = dft.numint.nr_rks(mf1._numint, mol1, grids1, xc, dm0)[1]

        grids0_w = copy.copy(grids0)
        grids0_w.weights = grids1.weights
        grids0_c = copy.copy(grids0)
        grids0_c.coords = grids1.coords
        exc0_w = dft.numint.nr_rks(mf0._numint, mol0, grids0_w, xc, dm0)[1]
        exc0_c = dft.numint.nr_rks(mf1._numint, mol1, grids0_c, xc, dm0)[1]

        dexc_t = (exc1 - exc0) * denom
        dexc_c = (exc0_c - exc0) * denom
        dexc_w = (exc0_w - exc0) * denom
        self.assertAlmostEqual(dexc_t, dexc_c + dexc_w, 4)

        vxc = rks.get_vxc(mf._numint, mol, grids, xc, dm0)[1]
        ev1, vxc1 = rks.get_vxc_full_response(mf._numint, mol, grids, xc, dm0)
        p0, p1 = mol.aoslice_by_atom()[0][2:]
        exc1_approx = numpy.einsum('xij,ij->x', vxc[:, p0:p1], dm0[p0:p1]) * 2
        exc1_full = numpy.einsum('xij,ij->x', vxc1[:, p0:p1],
                                 dm0[p0:p1]) * 2 + ev1[0]
        self.assertAlmostEqual(dexc_t, exc1_approx[2], 1)
        #FIXME: exc1_full is quite different to the finite difference results, why?
        self.assertAlmostEqual(dexc_t, exc1_full[2], 2)