示例#1
0
文件: kccsd.py 项目: chrinide/pyscf
 def ccsd(self, t1=None, t2=None, eris=None, **kwargs):
     if eris is None: eris = self.ao2mo(self.mo_coeff)
     e_corr, self.t1, self.t2 = ccsd.CCSD.ccsd(self, t1, t2, eris)
     if getattr(eris, 'orbspin', None) is not None:
         self.t1 = lib.tag_array(self.t1, orbspin=eris.orbspin)
         self.t2 = lib.tag_array(self.t2, orbspin=eris.orbspin)
     return e_corr, self.t1, self.t2
示例#2
0
文件: gccsd.py 项目: sunqm/pyscf
    def _common_init_(self, mycc, mo_coeff=None):
        if mo_coeff is None:
            mo_coeff = mycc.mo_coeff
        mo_idx = ccsd.get_frozen_mask(mycc)
        if getattr(mo_coeff, 'orbspin', None) is not None:
            self.orbspin = mo_coeff.orbspin[mo_idx]
            mo_coeff = lib.tag_array(mo_coeff[:,mo_idx], orbspin=self.orbspin)
            self.mo_coeff = mo_coeff
        else:
            orbspin = scf.ghf.guess_orbspin(mo_coeff)
            self.mo_coeff = mo_coeff = mo_coeff[:,mo_idx]
            if not np.any(orbspin == -1):
                self.orbspin = orbspin[mo_idx]
                self.mo_coeff = lib.tag_array(mo_coeff, orbspin=self.orbspin)

        # Note: Recomputed fock matrix since SCF may not be fully converged.
        dm = mycc._scf.make_rdm1(mycc.mo_coeff, mycc.mo_occ)
        fockao = mycc._scf.get_fock(dm=dm)
        self.fock = reduce(np.dot, (mo_coeff.conj().T, fockao, mo_coeff))
        self.nocc = mycc.nocc

        mo_e = self.mo_energy = self.fock.diagonal().real
        gap = abs(mo_e[:self.nocc,None] - mo_e[None,self.nocc:]).min()
        if gap < 1e-5:
            logger.warn(mycc, 'H**O-LUMO gap %s too small for GCCSD', gap)
        return self
示例#3
0
文件: gccsd.py 项目: sunqm/pyscf
    def ccsd(self, t1=None, t2=None, eris=None, mbpt2=False):
        '''Ground-state unrestricted (U)CCSD.

        Kwargs:
            mbpt2 : bool
                Use one-shot MBPT2 approximation to CCSD.
        '''
        if mbpt2:
            from pyscf.mp import gmp2
            pt = gmp2.GMP2(self._scf, self.frozen, self.mo_coeff, self.mo_occ)
            self.e_corr, self.t2 = pt.kernel(eris=eris)
            nocc, nvir = self.t2.shape[1:3]
            self.t1 = np.zeros((nocc,nvir))
            return self.e_corr, self.t1, self.t2

        # Initialize orbspin so that we can attach it to t1, t2
        if getattr(self.mo_coeff, 'orbspin', None) is None:
            orbspin = scf.ghf.guess_orbspin(self.mo_coeff)
            if not np.any(orbspin == -1):
                self.mo_coeff = lib.tag_array(self.mo_coeff, orbspin=orbspin)
        if eris is None: eris = self.ao2mo(self.mo_coeff)

        e_corr, self.t1, self.t2 = ccsd.CCSD.ccsd(self, t1, t2, eris)
        if getattr(eris, 'orbspin', None) is not None:
            self.t1 = lib.tag_array(self.t1, orbspin=eris.orbspin)
            self.t2 = lib.tag_array(self.t2, orbspin=eris.orbspin)
        return e_corr, self.t1, self.t2
示例#4
0
    def _finalize(self):
        uhf.UHF._finalize(self)

        ea = numpy.hstack(self.mo_energy[0])
        eb = numpy.hstack(self.mo_energy[1])
        # Using mergesort because it is stable. We don't want to change the
        # ordering of the symmetry labels when two orbitals are degenerated.
        oa_sort = numpy.argsort(ea[self.mo_occ[0]>0 ].round(9), kind='mergesort')
        va_sort = numpy.argsort(ea[self.mo_occ[0]==0].round(9), kind='mergesort')
        ob_sort = numpy.argsort(eb[self.mo_occ[1]>0 ].round(9), kind='mergesort')
        vb_sort = numpy.argsort(eb[self.mo_occ[1]==0].round(9), kind='mergesort')
        idxa = numpy.arange(ea.size)
        idxa = numpy.hstack((idxa[self.mo_occ[0]> 0][oa_sort],
                             idxa[self.mo_occ[0]==0][va_sort]))
        idxb = numpy.arange(eb.size)
        idxb = numpy.hstack((idxb[self.mo_occ[1]> 0][ob_sort],
                             idxb[self.mo_occ[1]==0][vb_sort]))
        self.mo_energy = (ea[idxa], eb[idxb])
        orbsyma, orbsymb = get_orbsym(self.mol, self.mo_coeff)
        self.mo_coeff = (lib.tag_array(self.mo_coeff[0][:,idxa], orbsym=orbsyma[idxa]),
                         lib.tag_array(self.mo_coeff[1][:,idxb], orbsym=orbsymb[idxb]))
        self.mo_occ = (self.mo_occ[0][idxa], self.mo_occ[1][idxb])
        if self.chkfile:
            chkfile.dump_scf(self.mol, self.chkfile, self.e_tot, self.mo_energy,
                             self.mo_coeff, self.mo_occ, overwrite_mol=False)
        return self
示例#5
0
    def eig(self, h, s):
        mol = self.mol
        if not mol.symmetry:
            return self._eigh(h, s)

        nirrep = mol.symm_orb.__len__()
        s = symm.symmetrize_matrix(s, mol.symm_orb)
        ha = symm.symmetrize_matrix(h[0], mol.symm_orb)
        cs = []
        es = []
        orbsym = []
        for ir in range(nirrep):
            e, c = self._eigh(ha[ir], s[ir])
            cs.append(c)
            es.append(e)
            orbsym.append([mol.irrep_id[ir]] * e.size)
        ea = numpy.hstack(es)
        ca = hf_symm.so2ao_mo_coeff(mol.symm_orb, cs)
        ca = lib.tag_array(ca, orbsym=numpy.hstack(orbsym))

        hb = symm.symmetrize_matrix(h[1], mol.symm_orb)
        cs = []
        es = []
        orbsym = []
        for ir in range(nirrep):
            e, c = self._eigh(hb[ir], s[ir])
            cs.append(c)
            es.append(e)
            orbsym.append([mol.irrep_id[ir]] * e.size)
        eb = numpy.hstack(es)
        cb = hf_symm.so2ao_mo_coeff(mol.symm_orb, cs)
        cb = lib.tag_array(cb, orbsym=numpy.hstack(orbsym))
        return (ea,eb), (ca,cb)
示例#6
0
文件: addons.py 项目: chrinide/pyscf
def spatial2spin(tx, orbspin=None):
    '''Convert T1/T2 of spatial orbital representation to T1/T2 of
    spin-orbital representation
    '''
    if isinstance(tx, numpy.ndarray) and tx.ndim == 2:
        # RCCSD t1 amplitudes
        return spatial2spin((tx,tx), orbspin)
    elif isinstance(tx, numpy.ndarray) and tx.ndim == 4:
        # RCCSD t2 amplitudes
        t2aa = tx - tx.transpose(0,1,3,2)
        return spatial2spin((t2aa,tx,t2aa), orbspin)
    elif len(tx) == 2:  # t1
        t1a, t1b = tx
        nocc_a, nvir_a = t1a.shape
        nocc_b, nvir_b = t1b.shape
    else:
        t2aa, t2ab, t2bb = tx
        nocc_a, nocc_b, nvir_a, nvir_b = t2ab.shape

    if orbspin is None:
        orbspin = numpy.zeros((nocc_a+nvir_a)*2, dtype=int)
        orbspin[1::2] = 1

    nocc = nocc_a + nocc_b
    nvir = nvir_a + nvir_b
    idxoa = numpy.where(orbspin[:nocc] == 0)[0]
    idxob = numpy.where(orbspin[:nocc] == 1)[0]
    idxva = numpy.where(orbspin[nocc:] == 0)[0]
    idxvb = numpy.where(orbspin[nocc:] == 1)[0]

    if len(tx) == 2:  # t1
        t1 = numpy.zeros((nocc,nvir), dtype=t1a.dtype)
        lib.takebak_2d(t1, t1a, idxoa, idxva)
        lib.takebak_2d(t1, t1b, idxob, idxvb)
        t1 = lib.tag_array(t1, orbspin=orbspin)
        return t1

    else:
        t2 = numpy.zeros((nocc**2,nvir**2), dtype=t2aa.dtype)
        idxoaa = idxoa[:,None] * nocc + idxoa
        idxoab = idxoa[:,None] * nocc + idxob
        idxoba = idxob[:,None] * nocc + idxoa
        idxobb = idxob[:,None] * nocc + idxob
        idxvaa = idxva[:,None] * nvir + idxva
        idxvab = idxva[:,None] * nvir + idxvb
        idxvba = idxvb[:,None] * nvir + idxva
        idxvbb = idxvb[:,None] * nvir + idxvb
        t2aa = t2aa.reshape(nocc_a*nocc_a,nvir_a*nvir_a)
        t2ab = t2ab.reshape(nocc_a*nocc_b,nvir_a*nvir_b)
        t2bb = t2bb.reshape(nocc_b*nocc_b,nvir_b*nvir_b)
        lib.takebak_2d(t2, t2aa, idxoaa.ravel()  , idxvaa.ravel()  )
        lib.takebak_2d(t2, t2bb, idxobb.ravel()  , idxvbb.ravel()  )
        lib.takebak_2d(t2, t2ab, idxoab.ravel()  , idxvab.ravel()  )
        lib.takebak_2d(t2, t2ab, idxoba.T.ravel(), idxvba.T.ravel())
        abba = -t2ab
        lib.takebak_2d(t2, abba, idxoab.ravel()  , idxvba.T.ravel())
        lib.takebak_2d(t2, abba, idxoba.T.ravel(), idxvab.ravel()  )
        t2 = lib.tag_array(t2, orbspin=orbspin)
        return t2.reshape(nocc,nocc,nvir,nvir)
示例#7
0
文件: gmp2.py 项目: chrinide/pyscf
    def __init__(self, mp, mo_coeff=None):
        self.orbspin = None

        if mo_coeff is None:
            mo_coeff = mp.mo_coeff
        mo_idx = mp.get_frozen_mask()
        if getattr(mo_coeff, 'orbspin', None) is not None:
            self.orbspin = mo_coeff.orbspin[mo_idx]
            mo_coeff = lib.tag_array(mo_coeff[:,mo_idx], orbspin=self.orbspin)
            self.mo_coeff = mo_coeff
        else:
            orbspin = scf.ghf.guess_orbspin(mo_coeff)
            self.mo_coeff = mo_coeff = mo_coeff[:,mo_idx]
            if not numpy.any(orbspin == -1):
                self.orbspin = orbspin[mo_idx]
                self.mo_coeff = lib.tag_array(mo_coeff, orbspin=self.orbspin)
示例#8
0
文件: gmp2.py 项目: chrinide/pyscf
def _make_eris_incore(mp, mo_coeff=None, ao2mofn=None, verbose=None):
    eris = _PhysicistsERIs(mp, mo_coeff)

    nocc = mp.nocc
    nao, nmo = eris.mo_coeff.shape
    nvir = nmo - nocc
    orbspin = eris.orbspin

    if callable(ao2mofn):
        orbo = eris.mo_coeff[:,:nocc]
        orbv = eris.mo_coeff[:,nocc:]
        orbo = lib.tag_array(orbo, orbspin=orbspin)
        eri = ao2mofn((orbo,orbv,orbo,orbv)).reshape(nocc,nvir,nocc,nvir)
    else:
        orboa = eris.mo_coeff[:nao//2,:nocc]
        orbob = eris.mo_coeff[nao//2:,:nocc]
        orbva = eris.mo_coeff[:nao//2,nocc:]
        orbvb = eris.mo_coeff[nao//2:,nocc:]
        if orbspin is None:
            eri  = ao2mo.kernel(mp._scf._eri, (orboa,orbva,orboa,orbva))
            eri += ao2mo.kernel(mp._scf._eri, (orbob,orbvb,orbob,orbvb))
            eri1 = ao2mo.kernel(mp._scf._eri, (orboa,orbva,orbob,orbvb))
            eri += eri1
            eri += eri1.T
            eri = eri.reshape(nocc,nvir,nocc,nvir)
        else:
            co = orboa + orbob
            cv = orbva + orbvb
            eri = ao2mo.kernel(mp._scf._eri, (co,cv,co,cv)).reshape(nocc,nvir,nocc,nvir)
            sym_forbid = (orbspin[:nocc,None] != orbspin[nocc:])
            eri[sym_forbid,:,:] = 0
            eri[:,:,sym_forbid] = 0

    eris.oovv = eri.transpose(0,2,1,3) - eri.transpose(0,2,3,1)
    return eris
示例#9
0
 def test_uhf_symm_get_occ(self):
     pmol = n2sym.copy()
     pmol.spin = 2
     mf = scf.UHF(pmol).set(verbose = 0)
     orbsym = numpy.array([[0 , 5 , 0 , 5 , 6 , 7 , 0 , 2 , 3 , 5 , 0 , 6 , 7 , 0 , 2 , 3 , 5 , 10, 11, 5],
                           [5 , 0 , 6 , 7 , 5 , 10, 11, 0 , 5 , 0 , 5 , 5 , 6 , 7 , 0 , 2 , 3 , 0 , 2 , 3]])
     energy = numpy.array([[34, 2 , 54, 43, 42, 33, 20, 61, 29, 26, 62, 52, 13, 51, 18, 78, 85, 49, 84, 7],
                           [29, 26, 13, 54, 18, 78, 85, 49, 84, 62, 42, 74, 20, 61, 51, 34, 2 , 33, 52, 3]])
     mf.irrep_nelec = {'A1g':7, 'A1u':3, 'E1ux':2, 'E1uy':2}
     mo_coeff = lib.tag_array([numpy.eye(energy.size)]*2, orbsym=orbsym)
     self.assertTrue(numpy.allclose(mf.get_occ(energy, mo_coeff),
             [[1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1],
              [0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]]))
     mf.irrep_nelec = {'A1g':(5,2), 'A1u':(1,2)}
     self.assertTrue(numpy.allclose(mf.get_occ(energy, mo_coeff),
             [[1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0],
              [1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1]]))
     mf.irrep_nelec = {'E1ux':2, 'E1uy':2}
     self.assertTrue(numpy.allclose(mf.get_occ(energy, mo_coeff),
             [[0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1],
              [0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1]]))
     mf.irrep_nelec = {}
     self.assertTrue(numpy.allclose(mf.get_occ(energy, mo_coeff),
             [[0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1],
              [0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1]]))
示例#10
0
文件: mpi.py 项目: sunqm/mpi4pyscf
def bcast_tagged_array(arr):
    '''Broadcast big nparray or tagged array.'''
    if comm.bcast(not isinstance(arr, numpy.ndarray)):
        return comm.bcast(arr)

    new_arr = bcast(arr)

    if comm.bcast(isinstance(arr, lib.NPArrayWithTag)):
        new_arr = lib.tag_array(new_arr)
        if rank == 0:
            kv = []
            for k, v in arr.__dict__.items():
                if isinstance(v, numpy.ndarray) and v.nbytes > 1e5:
                    kv.append((k, 'NPARRAY_TO_BCAST'))
                else:
                    kv.append((k, v))
            comm.bcast(kv)
        else:
            kv = comm.bcast(None)
            new_arr.__dict__.update(kv)

        for k, v in kv:
            if v is 'NPARRAY_TO_BCAST':
                new_arr.k = bcast(v)

    if rank != 0:
        arr = new_arr
    return arr
示例#11
0
 def rotate_mo(self, mo_coeff, u, log=None):
     mo = numpy.asarray((numpy.dot(mo_coeff[0], u[0]),
                         numpy.dot(mo_coeff[1], u[1])))
     if self._scf.mol.symmetry:
         orbsym = uhf_symm.get_orbsym(self._scf.mol, mo_coeff)
         mo = lib.tag_array(mo, orbsym=orbsym)
     return mo
示例#12
0
文件: rohf.py 项目: chrinide/pyscf
 def eig(self, fock, s):
     e, c = self._eigh(fock, s)
     if getattr(fock, 'focka', None) is not None:
         mo_ea = numpy.einsum('pi,pi->i', c.conj(), fock.focka.dot(c)).real
         mo_eb = numpy.einsum('pi,pi->i', c.conj(), fock.fockb.dot(c)).real
         e = lib.tag_array(e, mo_ea=mo_ea, mo_eb=mo_eb)
     return e, c
示例#13
0
文件: rohf.py 项目: chrinide/pyscf
def get_roothaan_fock(focka_fockb, dma_dmb, s):
    '''Roothaan's effective fock.
    Ref. http://www-theor.ch.cam.ac.uk/people/ross/thesis/node15.html

    ======== ======== ====== =========
    space     closed   open   virtual
    ======== ======== ====== =========
    closed      Fc      Fb     Fc
    open        Fb      Fc     Fa
    virtual     Fc      Fa     Fc
    ======== ======== ====== =========

    where Fc = (Fa + Fb) / 2

    Returns:
        Roothaan effective Fock matrix
    '''
    nao = s.shape[0]
    focka, fockb = focka_fockb
    dma, dmb = dma_dmb
    fc = (focka + fockb) * .5
# Projector for core, open-shell, and virtual
    pc = numpy.dot(dmb, s)
    po = numpy.dot(dma-dmb, s)
    pv = numpy.eye(nao) - numpy.dot(dma, s)
    fock  = reduce(numpy.dot, (pc.conj().T, fc, pc)) * .5
    fock += reduce(numpy.dot, (po.conj().T, fc, po)) * .5
    fock += reduce(numpy.dot, (pv.conj().T, fc, pv)) * .5
    fock += reduce(numpy.dot, (po.conj().T, fockb, pc))
    fock += reduce(numpy.dot, (po.conj().T, focka, pv))
    fock += reduce(numpy.dot, (pv.conj().T, fc, pc))
    fock = fock + fock.conj().T
    fock = lib.tag_array(fock, focka=focka, fockb=fockb)
    return fock
示例#14
0
    def test_canonicalize1(self):
        numpy.random.seed(1)
        f1 = numpy.random.random(mcr.mo_coeff.shape)
        u1 = numpy.linalg.svd(f1)[0]
        mo1 = numpy.dot(mcr.mo_coeff, u1)
        mo1 = lib.tag_array(mo1, orbsym=mcr.mo_coeff.orbsym)
        mo, ci, mo_e = mcr.canonicalize(mo1)
        e1 = numpy.einsum('ji,jk,ki', mo, f1, mo)
        self.assertAlmostEqual(e1, 44.2658681077, 7)
        self.assertAlmostEqual(lib.finger(mo_e), 5.1364166175063097, 7)

        mo, ci, mo_e = mcr.canonicalize(mo1, eris=mcr.ao2mo(mcr.mo_coeff))
        e1 = numpy.einsum('ji,jk,ki', mo, f1, mo)
        self.assertAlmostEqual(e1, 44.2658681077, 7)
        self.assertAlmostEqual(lib.finger(mo_e), 4.1206025804989173, 7)

        mcr1 = copy.copy(mcr)
        mcr1.frozen = 2
        mo, ci, mo_e = mcr1.canonicalize(mo1)
        self.assertAlmostEqual(lib.finger(mo_e), 6.6030999409178577, 7)

        mcr1.frozen = [0,1]
        mo, ci, mo_e = mcr1.canonicalize(mo1)
        self.assertAlmostEqual(lib.finger(mo_e), 6.6030999409178577, 7)

        mcr1.frozen = [1,12]
        mo, ci, mo_e = mcr1.canonicalize(mo1)
        self.assertAlmostEqual(lib.finger(mo_e), 5.2182584355788162, 7)
示例#15
0
文件: roks.py 项目: chrinide/pyscf
def get_veff(ks, mol=None, dm=None, dm_last=0, vhf_last=0, hermi=1):
    if getattr(dm, 'mo_coeff', None) is not None:
        mo_coeff = dm.mo_coeff
        mo_occ_a = (dm.mo_occ > 0).astype(numpy.double)
        mo_occ_b = (dm.mo_occ ==2).astype(numpy.double)
        dm = lib.tag_array(dm, mo_coeff=(mo_coeff,mo_coeff),
                           mo_occ=(mo_occ_a,mo_occ_b))
    return uks.get_veff(ks, mol, dm, dm_last, vhf_last, hermi)
示例#16
0
文件: kroks.py 项目: chrinide/pyscf
def get_veff(ks, cell=None, dm=None, dm_last=0, vhf_last=0, hermi=1,
             kpts=None, kpts_band=None):
    if getattr(dm, 'mo_coeff', None) is not None:
        mo_coeff = dm.mo_coeff
        mo_occ_a = [(x > 0).astype(np.double) for x in dm.mo_occ]
        mo_occ_b = [(x ==2).astype(np.double) for x in dm.mo_occ]
        dm = lib.tag_array(dm, mo_coeff=(mo_coeff,mo_coeff),
                           mo_occ=(mo_occ_a,mo_occ_b))
    return kuks.get_veff(ks, cell, dm, dm_last, vhf_last, hermi, kpts, kpts_band)
示例#17
0
文件: addons.py 项目: chrinide/pyscf
    def update_mo_(mf, mf1):
        if mf.mo_energy is not None:
            if isinstance(mf, scf.hf.RHF): # RHF
                nao, nmo = mf.mo_coeff.shape
                orbspin = get_ghf_orbspin(mf.mo_energy, mf.mo_occ, True)

                mf1.mo_energy = numpy.empty(nmo*2)
                mf1.mo_energy[orbspin==0] = mf.mo_energy
                mf1.mo_energy[orbspin==1] = mf.mo_energy
                mf1.mo_occ = numpy.empty(nmo*2)
                mf1.mo_occ[orbspin==0] = mf.mo_occ > 0
                mf1.mo_occ[orbspin==1] = mf.mo_occ == 2

                mo_coeff = numpy.zeros((nao*2,nmo*2), dtype=mf.mo_coeff.dtype)
                mo_coeff[:nao,orbspin==0] = mf.mo_coeff
                mo_coeff[nao:,orbspin==1] = mf.mo_coeff
                if getattr(mf.mo_coeff, 'orbsym', None) is not None:
                    orbsym = numpy.zeros_like(orbspin)
                    orbsym[orbspin==0] = mf.mo_coeff.orbsym
                    orbsym[orbspin==1] = mf.mo_coeff.orbsym
                    mo_coeff = lib.tag_array(mo_coeff, orbsym=orbsym)
                mf1.mo_coeff = lib.tag_array(mo_coeff, orbspin=orbspin)

            else: # UHF
                nao, nmo = mf.mo_coeff[0].shape
                orbspin = get_ghf_orbspin(mf.mo_energy, mf.mo_occ, False)

                mf1.mo_energy = numpy.empty(nmo*2)
                mf1.mo_energy[orbspin==0] = mf.mo_energy[0]
                mf1.mo_energy[orbspin==1] = mf.mo_energy[1]
                mf1.mo_occ = numpy.empty(nmo*2)
                mf1.mo_occ[orbspin==0] = mf.mo_occ[0]
                mf1.mo_occ[orbspin==1] = mf.mo_occ[1]

                mo_coeff = numpy.zeros((nao*2,nmo*2), dtype=mf.mo_coeff[0].dtype)
                mo_coeff[:nao,orbspin==0] = mf.mo_coeff[0]
                mo_coeff[nao:,orbspin==1] = mf.mo_coeff[1]
                if getattr(mf.mo_coeff[0], 'orbsym', None) is not None:
                    orbsym = numpy.zeros_like(orbspin)
                    orbsym[orbspin==0] = mf.mo_coeff[0].orbsym
                    orbsym[orbspin==1] = mf.mo_coeff[1].orbsym
                    mo_coeff = lib.tag_array(mo_coeff, orbsym=orbsym)
                mf1.mo_coeff = lib.tag_array(mo_coeff, orbspin=orbspin)
        return mf1
示例#18
0
文件: ddcosmo.py 项目: chrinide/pyscf
        def get_veff(self, mol=None, dm=None, *args, **kwargs):
            vhf = oldMF.get_veff(self, mol, dm, *args, **kwargs)
            with_solvent = self.with_solvent
            if not with_solvent.frozen:
                with_solvent.epcm, with_solvent.vpcm = with_solvent.kernel(dm)
            epcm, vpcm = with_solvent.epcm, with_solvent.vpcm

            # NOTE: vpcm should not be added to vhf in this place. This is
            # because vhf is used as the reference for direct_scf in the next
            # iteration. If vpcm is added here, it may break direct SCF.
            return lib.tag_array(vhf, epcm=epcm, vpcm=vpcm)
示例#19
0
文件: test_gccsd.py 项目: sunqm/pyscf
    def test_rdm_complex(self):
        mol = gto.M()
        mol.verbose = 0
        nocc = 6
        nvir = 8
        mf = scf.GHF(mol)
        nmo = nocc + nvir
        numpy.random.seed(1)
        eri = (numpy.random.random((nmo,nmo,nmo,nmo)) +
               numpy.random.random((nmo,nmo,nmo,nmo))* 1j - (.5+.5j))
        eri = eri + eri.transpose(1,0,3,2).conj()
        eri = eri + eri.transpose(2,3,0,1)
        eri *= .1

        def get_jk(mol, dm, *args,**kwargs):
            vj = numpy.einsum('ijkl,lk->ij', eri, dm)
            vk = numpy.einsum('ijkl,jk->il', eri, dm)
            return vj, vk
        def get_veff(mol, dm, *args, **kwargs):
            vj, vk = get_jk(mol, dm)
            return vj - vk
        def ao2mofn(mos):
            return eri

        mf.get_jk = get_jk
        mf.get_veff = get_veff
        hcore = numpy.random.random((nmo,nmo)) * .2 + numpy.random.random((nmo,nmo))* .2j
        hcore = hcore + hcore.T.conj() + numpy.diag(range(nmo))*2
        mf.get_hcore = lambda *args: hcore
        mf.get_ovlp = lambda *args: numpy.eye(nmo)
        orbspin = numpy.zeros(nmo, dtype=int)
        orbspin[1::2] = 1
        mf.mo_coeff = lib.tag_array(numpy.eye(nmo) + 0j, orbspin=orbspin)
        mf.mo_occ = numpy.zeros(nmo)
        mf.mo_occ[:nocc] = 1
        mf.e_tot = mf.energy_elec(mf.make_rdm1(), hcore)[0]

        mycc = cc.GCCSD(mf)
        eris = gccsd._make_eris_incore(mycc, mf.mo_coeff, ao2mofn)
        mycc.ao2mo = lambda *args, **kwargs: eris
        mycc.kernel(eris=eris)
        mycc.solve_lambda(eris=eris)
        dm1 = mycc.make_rdm1()
        dm2 = mycc.make_rdm2()

        e1 = numpy.einsum('ij,ji', hcore, dm1)
        e1+= numpy.einsum('ijkl,ijkl', eri, dm2) * .5
        self.assertAlmostEqual(e1, mycc.e_tot, 7)

        self.assertAlmostEqual(abs(dm2-dm2.transpose(1,0,3,2).conj()).max(), 0, 9)
        self.assertAlmostEqual(abs(dm2-dm2.transpose(2,3,0,1)       ).max(), 0, 9)
        self.assertAlmostEqual(abs(dm2+dm2.transpose(2,1,0,3)       ).max(), 0, 9)
        self.assertAlmostEqual(abs(dm2+dm2.transpose(0,3,2,1)       ).max(), 0, 9)
示例#20
0
文件: rohf.py 项目: chrinide/pyscf
def canonicalize(mf, mo_coeff, mo_occ, fock=None):
    '''Canonicalization diagonalizes the Fock matrix within occupied, open,
    virtual subspaces separatedly (without change occupancy).
    '''
    if getattr(fock, 'focka', None) is None:
        dm = mf.make_rdm1(mo_coeff, mo_occ)
        fock = mf.get_fock(dm=dm)
    mo_e, mo_coeff = hf.canonicalize(mf, mo_coeff, mo_occ, fock)
    fa, fb = fock.focka, fock.fockb
    mo_ea = numpy.einsum('pi,pi->i', mo_coeff.conj(), fa.dot(mo_coeff)).real
    mo_eb = numpy.einsum('pi,pi->i', mo_coeff.conj(), fb.dot(mo_coeff)).real
    mo_e = lib.tag_array(mo_e, mo_ea=mo_ea, mo_eb=mo_eb)
    return mo_e, mo_coeff
示例#21
0
 def test_multigrid_roks(self):
     mf = dft.ROKS(cell_he)
     mf.xc = 'lda,'
     mo = dm_he[0]
     nao = cell_he.nao
     mo_occ = numpy.ones(nao)
     dm1 = numpy.einsum('pi,i,qi->pq', mo, mo_occ, mo)
     dm1 = lib.tag_array(numpy.array([dm1,dm1]), mo_coeff=mo,
                         mo_occ=mo_occ*2)
     ref = mf.get_veff(cell_he, dm1)
     out = multigrid.multigrid(mf).get_veff(cell_he, dm1)
     self.assertAlmostEqual(float(abs(ref-out).max()), 0, 9)
     self.assertAlmostEqual(abs(ref.exc-out.exc).max(), 0, 9)
     self.assertAlmostEqual(abs(ref.ecoul-out.ecoul).max(), 0, 8)
示例#22
0
 def test_multigrid_kroks(self):
     mf = dft.KROKS(cell_he)
     mf.xc = 'lda,'
     nao = cell_he.nao
     mo = dm_he
     mo_occ = numpy.ones((2,nao))
     dm1 = numpy.einsum('kpi,ki,kqi->kpq', mo, mo_occ, mo)
     dm1 = lib.tag_array(numpy.array([dm1,dm1]), mo_coeff=mo,
                         mo_occ=mo_occ*2)
     ref = mf.get_veff(cell_he, dm1, kpts=kpts)
     out = multigrid.multigrid(mf).get_veff(cell_he, dm1, kpts=kpts)
     self.assertAlmostEqual(float(abs(ref-out).max()), 0, 9)
     self.assertAlmostEqual(abs(ref.exc-out.exc).max(), 0, 9)
     self.assertAlmostEqual(abs(ref.ecoul-out.ecoul).max(), 0, 9)
示例#23
0
文件: rohf.py 项目: chrinide/pyscf
 def get_veff(self, cell=None, dm=None, dm_last=0, vhf_last=0, hermi=1,
              kpt=None, kpts_band=None):
     if cell is None: cell = self.cell
     if dm is None: dm = self.make_rdm1()
     if kpt is None: kpt = self.kpt
     if isinstance(dm, np.ndarray) and dm.ndim == 2:
         dm = np.asarray((dm*.5,dm*.5))
     if getattr(dm, 'mo_coeff', None) is not None:
         mo_coeff = dm.mo_coeff
         mo_occ_a = (dm.mo_occ > 0).astype(np.double)
         mo_occ_b = (dm.mo_occ ==2).astype(np.double)
         dm = lib.tag_array(dm, mo_coeff=(mo_coeff,mo_coeff),
                            mo_occ=(mo_occ_a,mo_occ_b))
     vj, vk = self.get_jk(cell, dm, hermi, kpt, kpts_band)
     vhf = vj[0] + vj[1] - vk
     return vhf
示例#24
0
文件: addons.py 项目: chrinide/pyscf
 def update_mo_(mf, mf1):
     if mf.mo_energy is not None:
         if isinstance(mf, scf.hf.RHF): # RHF/ROHF/KRHF/KROHF
             mf1.mo_occ = mf.mo_occ
             mf1.mo_coeff = mf.mo_coeff
             mf1.mo_energy = mf.mo_energy
         elif getattr(mf, 'kpts', None) is None:  # UHF
             mf1.mo_occ = mf.mo_occ[0] + mf.mo_occ[1]
             mf1.mo_energy = mf.mo_energy[0]
             mf1.mo_coeff =  mf.mo_coeff[0]
             if getattr(mf.mo_coeff[0], 'orbsym', None) is not None:
                 mf1.mo_coeff = lib.tag_array(mf1.mo_coeff, orbsym=mf.mo_coeff[0].orbsym)
         else:  # KUHF
             mf1.mo_occ = [occa+occb for occa, occb in zip(*mf.mo_occ)]
             mf1.mo_energy = mf.mo_energy[0]
             mf1.mo_coeff =  mf.mo_coeff[0]
     return mf1
示例#25
0
文件: uks.py 项目: chrinide/pyscf
def get_fock(nmrobj, dm0=None, gauge_orig=None):
    '''First order Fock matrix wrt external magnetic field'''
    if dm0 is None: dm0 = nmrobj._scf.make_rdm1()
    if gauge_orig is None: gauge_orig = nmrobj.gauge_orig

    mol = nmrobj.mol

    if gauge_orig is None:
        log = logger.Logger(nmrobj.stdout, nmrobj.verbose)
        log.debug('First-order GIAO Fock matrix')

        mf = nmrobj._scf
        ni = mf._numint
        omega, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, spin=mol.spin)

        mem_now = lib.current_memory()[0]
        max_memory = max(2000, mf.max_memory*.9-mem_now)
        # Attach mo_coeff and mo_occ to improve get_vxc_giao efficiency
        dm0 = lib.tag_array(dm0, mo_coeff=mf.mo_coeff, mo_occ=mf.mo_occ)
        h1 = -get_vxc_giao(ni, mol, mf.grids, mf.xc, dm0,
                           max_memory=max_memory, verbose=nmrobj.verbose)

        intor = mol._add_suffix('int2e_ig1')
        if abs(hyb) > 1e-10:
            vj, vk = rhf_nmr.get_jk(mol, dm0)
            h1 += vj[0] + vj[1] - hyb * vk
            if abs(omega) > 1e-10:
                with mol.with_range_coulomb(omega):
                    h1 -= (alpha-hyb) * rhf_nmr.get_jk(mol, dm0)[1]
        else:
            vj = _vhf.direct_mapdm(intor, 'a4ij', 'lk->s1ij',
                                   dm0, 3, mol._atm, mol._bas, mol._env)
            h1 -= vj[0] + vj[1]

        h1 -= .5 * mol.intor('int1e_giao_irjxp', 3)
        h1 -= mol.intor_asymmetric('int1e_ignuc', 3)
        if mol.has_ecp():
            h1 -= mol.intor_asymmetric('ECPscalar_ignuc', 3)
        h1 -= mol.intor('int1e_igkin', 3)
    else:
        with mol.with_common_origin(gauge_orig):
            h1 = -.5 * mol.intor('int1e_cg_irxp', 3)
            h1 = (h1, h1)
    if nmrobj.chkfile:
        lib.chkfile.dump(nmrobj.chkfile, 'nmr/h1', h1)
    return h1
示例#26
0
文件: addons.py 项目: chrinide/pyscf
        def update_mo_(mf, mf1):
            _keys = mf._keys.union(mf1._keys)
            mf1.__dict__.update(mf.__dict__)
            mf1._keys = _keys
            if mf.mo_energy is not None:
                mf1.mo_energy = []
                mf1.mo_occ = []
                mf1.mo_coeff = []
                nkpts = len(mf.kpts)
                is_rhf = isinstance(mf, scf.hf.RHF)
                for k in range(nkpts):
                    if is_rhf:
                        mo_a = mo_b = mf.mo_coeff[k]
                        ea = eb = mf.mo_energy[k]
                        occa = mf.mo_occ[k] > 0
                        occb = mf.mo_occ[k] == 2
                        orbspin = mol_addons.get_ghf_orbspin(ea, mf.mo_occ[k], True)
                    else:
                        mo_a = mf.mo_coeff[0][k]
                        mo_b = mf.mo_coeff[1][k]
                        ea = mf.mo_energy[0][k]
                        eb = mf.mo_energy[1][k]
                        occa = mf.mo_occ[0][k]
                        occb = mf.mo_occ[1][k]
                        orbspin = mol_addons.get_ghf_orbspin((ea, eb), (occa, occb), False)

                    nao, nmo = mo_a.shape

                    mo_energy = numpy.empty(nmo*2)
                    mo_energy[orbspin==0] = ea
                    mo_energy[orbspin==1] = eb
                    mo_occ = numpy.empty(nmo*2)
                    mo_occ[orbspin==0] = occa
                    mo_occ[orbspin==1] = occb

                    mo_coeff = numpy.zeros((nao*2,nmo*2), dtype=mo_a.dtype)
                    mo_coeff[:nao,orbspin==0] = mo_a
                    mo_coeff[nao:,orbspin==1] = mo_b
                    mo_coeff = lib.tag_array(mo_coeff, orbspin=orbspin)

                    mf1.mo_energy.append(mo_energy)
                    mf1.mo_occ.append(mo_occ)
                    mf1.mo_coeff.append(mo_coeff)

            return mf1
示例#27
0
文件: uks.py 项目: chrinide/pyscf
def get_veff(ks_grad, mol=None, dm=None):
    '''Coulomb + XC functional
    '''
    if mol is None: mol = ks_grad.mol
    if dm is None: dm = ks_grad.base.make_rdm1()
    t0 = (time.clock(), time.time())

    mf = ks_grad.base
    ni = mf._numint
    if ks_grad.grids is not None:
        grids = ks_grad.grids
    else:
        grids = mf.grids
    if grids.coords is None:
        grids.build(with_non0tab=True)

    if mf.nlc != '':
        raise NotImplementedError
    #enabling range-separated hybrids
    omega, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, spin=mol.spin)

    mem_now = lib.current_memory()[0]
    max_memory = max(2000, ks_grad.max_memory*.9-mem_now)
    if ks_grad.grid_response:
        exc, vxc = get_vxc_full_response(ni, mol, grids, mf.xc, dm,
                                         max_memory=max_memory,
                                         verbose=ks_grad.verbose)
        logger.debug1(ks_grad, 'sum(grids response) %s', exc.sum(axis=0))
    else:
        exc, vxc = get_vxc(ni, mol, grids, mf.xc, dm,
                           max_memory=max_memory, verbose=ks_grad.verbose)
    t0 = logger.timer(ks_grad, 'vxc', *t0)

    if abs(hyb) < 1e-10:
        vj = ks_grad.get_j(mol, dm)
        vxc += vj[0] + vj[1]
    else:
        vj, vk = ks_grad.get_jk(mol, dm)
        vk *= hyb
        if abs(omega) > 1e-10:  # For range separated Coulomb operator
            with mol.with_range_coulomb(omega):
                vk += ks_grad.get_k(mol, dm) * (alpha - hyb)
        vxc += vj[0] + vj[1] - vk

    return lib.tag_array(vxc, exc1_grid=exc)
示例#28
0
文件: test_rhf.py 项目: sunqm/pyscf
    def test_rhf_symm_get_occ(self):
        mf = scf.RHF(n2sym).set(verbose = 0)
        orbsym = numpy.array([0 , 5, 0 , 5 , 6 , 7 , 0 , 2 , 3 , 5 , 0 , 6 , 7 , 0 , 2 , 3 , 5 , 10, 11, 5])
        energy = numpy.array([34, 2, 54, 43, 42, 33, 20, 61, 29, 26, 62, 52, 13, 51, 18, 78, 85, 49, 84, 7])
        mo_coeff = lib.tag_array(numpy.eye(energy.size), orbsym=orbsym)
        mf.irrep_nelec = {'A1g':6, 'A1u':4, 'E1ux':2, 'E1uy':2}
        self.assertTrue(numpy.allclose(mf.get_occ(energy, mo_coeff),
                [2, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2]))
        mf.irrep_nelec = {'E1ux':2, 'E1uy':2}
        self.assertTrue(numpy.allclose(mf.get_occ(energy, mo_coeff),
                [0, 2, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 2]))
        mf.irrep_nelec = {}
        self.assertTrue(numpy.allclose(mf.get_occ(energy, mo_coeff),
                [0, 2, 0, 0, 0, 0, 2, 0, 2, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 2]))

        mo_coeff = numpy.eye(energy.size)
        self.assertTrue(numpy.allclose(mf.get_occ(energy),
                [0, 2, 0, 0, 0, 0, 2, 0, 2, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 2]))
示例#29
0
文件: test_rhf.py 项目: sunqm/pyscf
    def test_rohf_symm_get_occ(self):
        pmol = n2sym.copy()
        pmol.charge = 0
        pmol.spin = 2
        mf = scf.ROHF(pmol).set(verbose = 0)
        orbsym = numpy.array([0 , 5, 0 , 5 , 6 , 7 , 0 , 2 , 3 , 5 , 0 , 6 , 7 , 0 , 2 , 3 , 5 , 10, 11, 5])
        energy = numpy.array([34, 2, 54, 43, 42, 33, 20, 61, 29, 26, 62, 52, 13, 51, 18, 78, 85, 49, 84, 7])
        mo_coeff = lib.tag_array(numpy.eye(energy.size), orbsym=orbsym)
        mf.irrep_nelec = {'A1g':7, 'A1u':3, 'E1ux':2, 'E1uy':2}
        self.assertTrue(numpy.allclose(mf.get_occ(energy, mo_coeff),
                [2, 2, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 1]))
        mf.irrep_nelec = {'E1ux':2, 'E1uy':2}
        self.assertTrue(numpy.allclose(mf.get_occ(energy, mo_coeff),
                [0, 2, 0, 0, 2, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 0, 0, 0, 0, 2]))
        mf.irrep_nelec = {}
        self.assertTrue(numpy.allclose(mf.get_occ(energy, mo_coeff),
                [0, 2, 0, 0, 0, 1, 2, 0, 1, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 2]))

        mf1 = scf.RHF(mol).set(verbose=0).view(scf.hf_symm.ROHF)
        self.assertTrue(numpy.allclose(mf1.get_occ(energy, mo_coeff),
                [0 ,2 ,0 ,0 ,0 ,0 ,2 ,0 ,0 ,0 ,0 ,0 ,2 ,0 ,2 ,0 ,0 ,0 ,0 ,2]))
示例#30
0
文件: rohf.py 项目: chrinide/pyscf
    def get_veff(self, mol=None, dm=None, dm_last=0, vhf_last=0, hermi=1):
        if mol is None: mol = self.mol
        if dm is None: dm = self.make_rdm1()
        if isinstance(dm, numpy.ndarray) and dm.ndim == 2:
            dm = numpy.array((dm*.5, dm*.5))

        if self._eri is not None or not self.direct_scf:
            if getattr(dm, 'mo_coeff', None) is not None:
                mo_coeff = dm.mo_coeff
                mo_occ_a = (dm.mo_occ > 0).astype(numpy.double)
                mo_occ_b = (dm.mo_occ ==2).astype(numpy.double)
                dm = lib.tag_array(dm, mo_coeff=(mo_coeff,mo_coeff),
                                   mo_occ=(mo_occ_a,mo_occ_b))
            vj, vk = self.get_jk(mol, dm, hermi)
            vhf = vj[0] + vj[1] - vk
        else:
            ddm = dm - numpy.asarray(dm_last)
            vj, vk = self.get_jk(mol, ddm, hermi)
            vhf = vj[0] + vj[1] - vk
            vhf += numpy.asarray(vhf_last)
        return vhf
示例#31
0
def get_jk(mf_grad, mol=None, dm=None, hermi=0, with_j=True, with_k=True):
    if mol is None: mol = mf_grad.mol
    #if dm is None: dm = mf_grad.base.make_rdm1()
    #TODO: dm has to be the SCF density matrix in this version.  dm should be
    # extended to any 1-particle density matrix
    dm = mf_grad.base.make_rdm1()

    with_df = mf_grad.base.with_df
    auxmol = with_df.auxmol
    if auxmol is None:
        auxmol = df.addons.make_auxmol(with_df.mol, with_df.auxbasis)
    pmol = mol + auxmol
    ao_loc = mol.ao_loc
    nbas = mol.nbas
    nauxbas = auxmol.nbas

    get_int3c_s1 = _int3c_wrapper(mol, auxmol, 'int3c2e', 's1')
    get_int3c_s2 = _int3c_wrapper(mol, auxmol, 'int3c2e', 's2ij')
    get_int3c_ip1 = _int3c_wrapper(mol, auxmol, 'int3c2e_ip1', 's1')
    get_int3c_ip2 = _int3c_wrapper(mol, auxmol, 'int3c2e_ip2', 's2ij')

    nao = mol.nao
    naux = auxmol.nao
    dms = numpy.asarray(dm)
    out_shape = dms.shape[:-2] + (3, ) + dms.shape[-2:]
    dms = dms.reshape(-1, nao, nao)
    nset = dms.shape[0]

    auxslices = auxmol.aoslice_by_atom()
    aux_loc = auxmol.ao_loc
    max_memory = mf_grad.max_memory - lib.current_memory()[0]
    blksize = int(min(max(max_memory * .5e6 / 8 / (nao**2 * 3), 20), naux,
                      240))
    ao_ranges = balance_partition(aux_loc, blksize)

    if not with_k:
        idx = numpy.arange(nao)
        dm_tril = dms + dms.transpose(0, 2, 1)
        dm_tril[:, idx, idx] *= .5
        dm_tril = lib.pack_tril(dm_tril)

        # (i,j|P)
        rhoj = numpy.empty((nset, naux))
        for shl0, shl1, nL in ao_ranges:
            int3c = get_int3c_s2((0, nbas, 0, nbas, shl0, shl1))  # (i,j|P)
            p0, p1 = aux_loc[shl0], aux_loc[shl1]
            rhoj[:, p0:p1] = numpy.einsum('wp,nw->np', int3c, dm_tril)
            int3c = None

        # (P|Q)
        int2c = auxmol.intor('int2c2e', aosym='s1')
        rhoj = scipy.linalg.solve(int2c, rhoj.T, sym_pos=True).T
        int2c = None

        # (d/dX i,j|P)
        vj = numpy.zeros((nset, 3, nao, nao))
        for shl0, shl1, nL in ao_ranges:
            int3c = get_int3c_ip1((0, nbas, 0, nbas, shl0, shl1))  # (i,j|P)
            p0, p1 = aux_loc[shl0], aux_loc[shl1]
            vj += numpy.einsum('xijp,np->nxij', int3c, rhoj[:, p0:p1])
            int3c = None

        if mf_grad.auxbasis_response:
            # (i,j|d/dX P)
            vjaux = numpy.empty((3, naux))
            for shl0, shl1, nL in ao_ranges:
                int3c = get_int3c_ip2(
                    (0, nbas, 0, nbas, shl0, shl1))  # (i,j|P)
                p0, p1 = aux_loc[shl0], aux_loc[shl1]
                vjaux[:, p0:p1] = numpy.einsum('xwp,mw,np->xp', int3c, dm_tril,
                                               rhoj[:, p0:p1])
                int3c = None

            # (d/dX P|Q)
            int2c_e1 = auxmol.intor('int2c2e_ip1', aosym='s1')
            vjaux -= numpy.einsum('xpq,mp,nq->xp', int2c_e1, rhoj, rhoj)

            vjaux = [
                -vjaux[:, p0:p1].sum(axis=1) for p0, p1 in auxslices[:, 2:]
            ]
            vj = lib.tag_array(-vj.reshape(out_shape), aux=numpy.array(vjaux))
        else:
            vj = -vj.reshape(out_shape)
        return vj, None

    mo_coeff = mf_grad.base.mo_coeff
    mo_occ = mf_grad.base.mo_occ
    nmo = mo_occ.shape[-1]
    if isinstance(mf_grad.base, scf.rohf.ROHF):
        mo_coeff = numpy.vstack((mo_coeff, mo_coeff))
        mo_occa = numpy.array(mo_occ > 0, dtype=numpy.double)
        mo_occb = numpy.array(mo_occ == 2, dtype=numpy.double)
        assert (mo_occa.sum() + mo_occb.sum() == mo_occ.sum())
        mo_occ = numpy.vstack((mo_occa, mo_occb))

    mo_coeff = numpy.asarray(mo_coeff).reshape(-1, nao, nmo)
    mo_occ = numpy.asarray(mo_occ).reshape(-1, nmo)
    rhoj = numpy.zeros((nset, naux))
    f_rhok = lib.H5TmpFile()
    orbo = []
    for i in range(nset):
        c = numpy.einsum('pi,i->pi', mo_coeff[i][:, mo_occ[i] > 0],
                         numpy.sqrt(mo_occ[i][mo_occ[i] > 0]))
        nocc = c.shape[1]
        orbo.append(c)

    # (P|Q)
    int2c = scipy.linalg.cho_factor(auxmol.intor('int2c2e', aosym='s1'))

    max_memory = mf_grad.max_memory - lib.current_memory()[0]
    blksize = max_memory * .5e6 / 8 / (naux * nao)
    mol_ao_ranges = balance_partition(ao_loc, blksize)
    nsteps = len(mol_ao_ranges)
    for istep, (shl0, shl1, nd) in enumerate(mol_ao_ranges):
        int3c = get_int3c_s1((0, nbas, shl0, shl1, 0, nauxbas))
        p0, p1 = ao_loc[shl0], ao_loc[shl1]
        rhoj += numpy.einsum('nlk,klp->np', dms[:, p0:p1], int3c)
        for i in range(nset):
            v = lib.einsum('ko,klp->plo', orbo[i], int3c)
            v = scipy.linalg.cho_solve(int2c, v.reshape(naux, -1))
            f_rhok['%s/%s' % (i, istep)] = v.reshape(naux, p1 - p0, -1)
        int3c = v = None

    rhoj = scipy.linalg.cho_solve(int2c, rhoj.T).T
    int2c = None

    def load(set_id, p0, p1):
        nocc = orbo[set_id].shape[1]
        buf = numpy.empty((p1 - p0, nocc, nao))
        col1 = 0
        for istep in range(nsteps):
            dat = f_rhok['%s/%s' % (set_id, istep)][p0:p1]
            col0, col1 = col1, col1 + dat.shape[1]
            buf[:p1 - p0, :, col0:col1] = dat.transpose(0, 2, 1)
        return buf

    vj = numpy.zeros((nset, 3, nao, nao))
    vk = numpy.zeros((nset, 3, nao, nao))
    # (d/dX i,j|P)
    for shl0, shl1, nL in ao_ranges:
        int3c = get_int3c_ip1((0, nbas, 0, nbas, shl0, shl1))  # (i,j|P)
        p0, p1 = aux_loc[shl0], aux_loc[shl1]
        vj += numpy.einsum('xijp,np->nxij', int3c, rhoj[:, p0:p1])
        for i in range(nset):
            tmp = lib.einsum('xijp,jo->xipo', int3c, orbo[i])
            rhok = load(i, p0, p1)
            vk[i] += lib.einsum('xipo,pok->xik', tmp, rhok)
            tmp = rhok = None
        int3c = None

    max_memory = mf_grad.max_memory - lib.current_memory()[0]
    blksize = int(min(max(max_memory * .5e6 / 8 / (nao * nocc), 20), naux))
    rhok_oo = []
    for i in range(nset):
        nocc = orbo[i].shape[1]
        tmp = numpy.empty((naux, nocc, nocc))
        for p0, p1 in lib.prange(0, naux, blksize):
            rhok = load(i, p0, p1)
            tmp[p0:p1] = lib.einsum('pok,kr->por', rhok, orbo[i])
        rhok_oo.append(tmp)
        rhok = tmp = None

    if mf_grad.auxbasis_response:
        vjaux = numpy.zeros((3, naux))
        vkaux = numpy.zeros((3, naux))
        # (i,j|d/dX P)
        for shl0, shl1, nL in ao_ranges:
            int3c = get_int3c_ip2((0, nbas, 0, nbas, shl0, shl1))  # (i,j|P)
            p0, p1 = aux_loc[shl0], aux_loc[shl1]
            int3c = int3c.transpose(0, 2, 1).reshape(3 * (p1 - p0), -1)
            int3c = lib.unpack_tril(int3c)
            int3c = int3c.reshape(3, p1 - p0, nao, nao)
            vjaux[:, p0:p1] = numpy.einsum('xpij,mji,np->xp', int3c, dms,
                                           rhoj[:, p0:p1])
            for i in range(nset):
                tmp = rhok_oo[i][p0:p1]
                tmp = lib.einsum('por,ir->pio', tmp, orbo[i])
                tmp = lib.einsum('pio,jo->pij', tmp, orbo[i])
                vkaux[:, p0:p1] += lib.einsum('xpij,pij->xp', int3c, tmp)
        int3c = tmp = None

        # (d/dX P|Q)
        int2c_e1 = auxmol.intor('int2c2e_ip1')
        vjaux -= numpy.einsum('xpq,mp,nq->xp', int2c_e1, rhoj, rhoj)
        for i in range(nset):
            tmp = lib.einsum('pij,qij->pq', rhok_oo[i], rhok_oo[i])
            vkaux -= numpy.einsum('xpq,pq->xp', int2c_e1, tmp)

        vjaux = [-vjaux[:, p0:p1].sum(axis=1) for p0, p1 in auxslices[:, 2:]]
        vkaux = [-vkaux[:, p0:p1].sum(axis=1) for p0, p1 in auxslices[:, 2:]]
        vj = lib.tag_array(-vj.reshape(out_shape), aux=numpy.array(vjaux))
        vk = lib.tag_array(-vk.reshape(out_shape), aux=numpy.array(vkaux))
    else:
        vj = -vj.reshape(out_shape)
        vk = -vk.reshape(out_shape)
    return vj, vk
示例#32
0
def canonicalize(mf, mo_coeff, mo_occ, fock=None):
    '''Canonicalization diagonalizes the UHF Fock matrix in occupied, virtual
    subspaces separatedly (without change occupancy).
    '''
    mol = mf.mol
    if not mol.symmetry:
        return uhf.canonicalize(mf, mo_coeff, mo_occ, fock)

    mo_occ = numpy.asarray(mo_occ)
    assert (mo_occ.ndim == 2)
    if fock is None:
        dm = mf.make_rdm1(mo_coeff, mo_occ)
        fock = mf.get_hcore() + mf.get_veff(mf.mol, dm)
    occidxa = mo_occ[0] == 1
    occidxb = mo_occ[1] == 1
    viridxa = ~occidxa
    viridxb = ~occidxb
    mo = numpy.empty_like(mo_coeff)
    mo_e = numpy.empty(mo_occ.shape)

    if (getattr(mo_coeff, 'orbsym', None) is not None
            or (getattr(mo_coeff[0], 'orbsym', None) is not None
                and getattr(mo_coeff[1], 'orbsym', None) is not None)):
        orbsyma, orbsymb = get_orbsym(mol, mo_coeff)

        def eig_(fock, mo_coeff, idx, es, cs):
            if numpy.count_nonzero(idx) > 0:
                orb = mo_coeff[:, idx]
                f1 = reduce(numpy.dot, (orb.T.conj(), fock, orb))
                e, c = scipy.linalg.eigh(f1)
                es[idx] = e
                cs[:, idx] = numpy.dot(mo_coeff[:, idx], c)

        for ir in set(orbsyma):
            idx_ir = orbsyma == ir
            eig_(fock[0], mo_coeff[0], idx_ir & occidxa, mo_e[0], mo[0])
            eig_(fock[0], mo_coeff[0], idx_ir & viridxa, mo_e[0], mo[0])
        for ir in set(orbsymb):
            idx_ir = orbsymb == ir
            eig_(fock[1], mo_coeff[1], idx_ir & occidxb, mo_e[1], mo[1])
            eig_(fock[1], mo_coeff[1], idx_ir & viridxb, mo_e[1], mo[1])

    else:
        s = mf.get_ovlp()

        def eig_(fock, mo_coeff, idx, es, cs):
            if numpy.count_nonzero(idx) > 0:
                orb = mo_coeff[:, idx]
                f1 = reduce(numpy.dot, (orb.T.conj(), fock, orb))
                e, c = scipy.linalg.eigh(f1)
                es[idx] = e
                c = numpy.dot(mo_coeff[:, idx], c)
                cs[:, idx] = hf_symm._symmetrize_canonicalization_(mf, e, c, s)

        eig_(fock[0], mo_coeff[0], occidxa, mo_e[0], mo[0])
        eig_(fock[0], mo_coeff[0], viridxa, mo_e[0], mo[0])
        eig_(fock[1], mo_coeff[1], occidxb, mo_e[1], mo[1])
        eig_(fock[1], mo_coeff[1], viridxb, mo_e[1], mo[1])
        orbsyma, orbsymb = get_orbsym(mol, mo, s, False)

    mo = (lib.tag_array(mo[0],
                        orbsym=orbsyma), lib.tag_array(mo[1], orbsym=orbsymb))
    return mo_e, mo
示例#33
0
文件: kccsd.py 项目: quansilong/pyscf
def spatial2spin(tx, orbspin, kconserv):
    '''Convert T1/T2 of spatial orbital representation to T1/T2 of
    spin-orbital representation
    '''
    if isinstance(tx, numpy.ndarray) and tx.ndim == 3:
        # KRCCSD t1 amplitudes
        return spatial2spin((tx, tx), orbspin, kconserv)
    elif isinstance(tx, numpy.ndarray) and tx.ndim == 7:
        # KRCCSD t2 amplitudes
        t2aa = numpy.zeros_like(tx)
        nkpts = t2aa.shape[2]
        for ki, kj, ka in kpts_helper.loop_kkk(nkpts):
            kb = kconserv[ki, ka, kj]
            t2aa[ki, kj,
                 ka] = tx[ki, kj, ka] - tx[ki, kj, kb].transpose(0, 1, 3, 2)
        return spatial2spin((t2aa, tx, t2aa), orbspin, kconserv)
    elif len(tx) == 2:  # KUCCSD t1
        t1a, t1b = tx
        nocc_a, nvir_a = t1a.shape[1:]
        nocc_b, nvir_b = t1b.shape[1:]
    else:  # KUCCSD t2
        t2aa, t2ab, t2bb = tx
        nocc_a, nocc_b, nvir_a, nvir_b = t2ab.shape[3:]

    nkpts = len(orbspin)
    nocc = nocc_a + nocc_b
    nvir = nvir_a + nvir_b
    idxoa = [numpy.where(orbspin[k][:nocc] == 0)[0] for k in range(nkpts)]
    idxob = [numpy.where(orbspin[k][:nocc] == 1)[0] for k in range(nkpts)]
    idxva = [numpy.where(orbspin[k][nocc:] == 0)[0] for k in range(nkpts)]
    idxvb = [numpy.where(orbspin[k][nocc:] == 1)[0] for k in range(nkpts)]

    if len(tx) == 2:  # t1
        t1 = numpy.zeros((nkpts, nocc, nvir), dtype=t1a.dtype)
        for k in range(nkpts):
            lib.takebak_2d(t1[k], t1a[k], idxoa[k], idxva[k])
            lib.takebak_2d(t1[k], t1b[k], idxob[k], idxvb[k])
        t1 = lib.tag_array(t1, orbspin=orbspin)
        return t1

    else:
        t2 = numpy.zeros((nkpts, nkpts, nkpts, nocc**2, nvir**2),
                         dtype=t2aa.dtype)
        for ki, kj, ka in kpts_helper.loop_kkk(nkpts):
            kb = kconserv[ki, ka, kj]
            idxoaa = idxoa[ki][:, None] * nocc + idxoa[kj]
            idxoab = idxoa[ki][:, None] * nocc + idxob[kj]
            idxoba = idxob[kj][:, None] * nocc + idxoa[ki]
            idxobb = idxob[ki][:, None] * nocc + idxob[kj]
            idxvaa = idxva[ka][:, None] * nvir + idxva[kb]
            idxvab = idxva[ka][:, None] * nvir + idxvb[kb]
            idxvba = idxvb[kb][:, None] * nvir + idxva[ka]
            idxvbb = idxvb[ka][:, None] * nvir + idxvb[kb]
            tmp2aa = t2aa[ki, kj, ka].reshape(nocc_a * nocc_a, nvir_a * nvir_a)
            tmp2bb = t2bb[ki, kj, ka].reshape(nocc_b * nocc_b, nvir_b * nvir_b)
            tmp2ab = t2ab[ki, kj, ka].reshape(nocc_a * nocc_b, nvir_a * nvir_b)
            lib.takebak_2d(t2[ki, kj, ka], tmp2aa, idxoaa.ravel(),
                           idxvaa.ravel())
            lib.takebak_2d(t2[ki, kj, ka], tmp2bb, idxobb.ravel(),
                           idxvbb.ravel())
            lib.takebak_2d(t2[ki, kj, ka], tmp2ab, idxoab.ravel(),
                           idxvab.ravel())
            lib.takebak_2d(t2[kj, ki, kb], tmp2ab, idxoba.T.ravel(),
                           idxvba.T.ravel())

            abba = -tmp2ab
            lib.takebak_2d(t2[ki, kj, kb], abba, idxoab.ravel(),
                           idxvba.T.ravel())
            lib.takebak_2d(t2[kj, ki, ka], abba, idxoba.T.ravel(),
                           idxvab.ravel())
        t2 = t2.reshape(nkpts, nkpts, nkpts, nocc, nocc, nvir, nvir)
        t2 = lib.tag_array(t2, orbspin=orbspin)
        return t2
示例#34
0
def get_jk(mf_grad,
           mol=None,
           dm=None,
           hermi=0,
           with_j=True,
           with_k=True,
           ishf=True):
    t0 = (time.process_time(), time.time())
    if mol is None: mol = mf_grad.mol
    if dm is None: dm = mf_grad.base.make_rdm1()

    with_df = mf_grad.base.with_df
    auxmol = with_df.auxmol
    if auxmol is None:
        auxmol = df.addons.make_auxmol(with_df.mol, with_df.auxbasis)
    pmol = mol + auxmol
    ao_loc = mol.ao_loc
    nbas = mol.nbas
    nauxbas = auxmol.nbas

    get_int3c_s1 = _int3c_wrapper(mol, auxmol, 'int3c2e', 's1')
    get_int3c_s2 = _int3c_wrapper(mol, auxmol, 'int3c2e', 's2ij')
    get_int3c_ip1 = _int3c_wrapper(mol, auxmol, 'int3c2e_ip1', 's1')
    get_int3c_ip2 = _int3c_wrapper(mol, auxmol, 'int3c2e_ip2', 's2ij')

    nao = mol.nao
    naux = auxmol.nao
    dms = numpy.asarray(dm)
    out_shape = dms.shape[:-2] + (3, ) + dms.shape[-2:]
    dms = dms.reshape(-1, nao, nao)
    nset = dms.shape[0]

    idx = numpy.arange(nao)
    idx = idx * (idx + 1) // 2 + idx
    dm_tril = dms + dms.transpose(0, 2, 1)
    dm_tril = lib.pack_tril(dm_tril)
    dm_tril[:, idx] *= .5

    auxslices = auxmol.aoslice_by_atom()
    aux_loc = auxmol.ao_loc
    max_memory = mf_grad.max_memory - lib.current_memory()[0]
    blksize = int(min(max(max_memory * .5e6 / 8 / (nao**2 * 3), 20), naux,
                      240))
    ao_ranges = balance_partition(aux_loc, blksize)

    if not with_k:

        # (i,j|P)
        rhoj = numpy.empty((nset, naux))
        for shl0, shl1, nL in ao_ranges:
            int3c = get_int3c_s2((0, nbas, 0, nbas, shl0, shl1))  # (i,j|P)
            p0, p1 = aux_loc[shl0], aux_loc[shl1]
            rhoj[:, p0:p1] = lib.einsum('wp,nw->np', int3c, dm_tril)
            int3c = None

        # (P|Q)
        int2c = auxmol.intor('int2c2e', aosym='s1')
        rhoj = scipy.linalg.solve(int2c, rhoj.T, sym_pos=True).T
        int2c = None

        # (d/dX i,j|P)
        vj = numpy.zeros((nset, 3, nao, nao))
        for shl0, shl1, nL in ao_ranges:
            int3c = get_int3c_ip1((0, nbas, 0, nbas, shl0, shl1))  # (i,j|P)
            p0, p1 = aux_loc[shl0], aux_loc[shl1]
            vj += lib.einsum('xijp,np->nxij', int3c, rhoj[:, p0:p1])
            int3c = None

        if mf_grad.auxbasis_response:
            # (i,j|d/dX P)
            vjaux = numpy.empty((nset, nset, 3, naux))
            for shl0, shl1, nL in ao_ranges:
                int3c = get_int3c_ip2(
                    (0, nbas, 0, nbas, shl0, shl1))  # (i,j|P)
                p0, p1 = aux_loc[shl0], aux_loc[shl1]
                vjaux[:, :, :, p0:p1] = lib.einsum('xwp,mw,np->mnxp', int3c,
                                                   dm_tril, rhoj[:, p0:p1])
                int3c = None

            # (d/dX P|Q)
            int2c_e1 = auxmol.intor('int2c2e_ip1', aosym='s1')
            vjaux -= lib.einsum('xpq,mp,nq->mnxp', int2c_e1, rhoj, rhoj)

            vjaux = numpy.array([
                -vjaux[:, :, :, p0:p1].sum(axis=3)
                for p0, p1 in auxslices[:, 2:]
            ])
            if ishf:
                vjaux = vjaux.sum((1, 2))
            else:
                vjaux = numpy.ascontiguousarray(vjaux.transpose(1, 2, 0, 3))
            vj = lib.tag_array(-vj.reshape(out_shape), aux=numpy.array(vjaux))
        else:
            vj = -vj.reshape(out_shape)
        logger.timer(mf_grad, 'df vj', *t0)
        return vj, None

    if hasattr(dm, 'mo_coeff') and hasattr(dm, 'mo_occ'):
        mo_coeff = dm.mo_coeff
        mo_occ = dm.mo_occ
    elif ishf:
        mo_coeff = mf_grad.base.mo_coeff
        mo_occ = mf_grad.base.mo_occ
        if isinstance(mf_grad.base, scf.rohf.ROHF):
            mo_coeff = numpy.vstack((mo_coeff, mo_coeff))
            mo_occa = numpy.array(mo_occ > 0, dtype=numpy.double)
            mo_occb = numpy.array(mo_occ == 2, dtype=numpy.double)
            assert (mo_occa.sum() + mo_occb.sum() == mo_occ.sum())
            mo_occ = numpy.vstack((mo_occa, mo_occb))
    else:
        s0 = mol.intor('int1e_ovlp')
        mo_occ = []
        mo_coeff = []
        for dm in dms:
            sdms = reduce(lib.dot, (s0, dm, s0))
            n, c = scipy.linalg.eigh(sdms, b=s0)
            mo_occ.append(n)
            mo_coeff.append(c)
        mo_occ = numpy.stack(mo_occ, axis=0)
    nmo = mo_occ.shape[-1]

    mo_coeff = numpy.asarray(mo_coeff).reshape(-1, nao, nmo)
    mo_occ = numpy.asarray(mo_occ).reshape(-1, nmo)
    rhoj = numpy.zeros((nset, naux))
    f_rhok = lib.H5TmpFile()
    orbor = []
    orbol = []
    nocc = []
    orbor_stack = numpy.zeros((nao, 0), dtype=mo_coeff.dtype, order='F')
    orbol_stack = numpy.zeros((nao, 0), dtype=mo_coeff.dtype, order='F')
    offs = 0
    for i in range(nset):
        idx = numpy.abs(mo_occ[i]) > 1e-8
        nocc.append(numpy.count_nonzero(idx))
        c = mo_coeff[i][:, idx]
        orbol_stack = numpy.append(orbol_stack, c, axis=1)
        orbol.append(orbol_stack[:, offs:offs + nocc[-1]])
        cn = lib.einsum('pi,i->pi', c, mo_occ[i][idx])
        orbor_stack = numpy.append(orbor_stack, cn, axis=1)
        orbor.append(orbor_stack[:, offs:offs + nocc[-1]])
        offs += nocc[-1]

    # (P|Q)
    int2c = scipy.linalg.cho_factor(auxmol.intor('int2c2e', aosym='s1'))

    t1 = (time.process_time(), time.time())
    max_memory = mf_grad.max_memory - lib.current_memory()[0]
    blksize = max_memory * .5e6 / 8 / (naux * nao)
    mol_ao_ranges = balance_partition(ao_loc, blksize)
    nsteps = len(mol_ao_ranges)
    t2 = t1
    for istep, (shl0, shl1, nd) in enumerate(mol_ao_ranges):
        int3c = get_int3c_s1((0, nbas, shl0, shl1, 0, nauxbas))
        t2 = logger.timer_debug1(mf_grad, 'df grad intor (P|mn)', *t2)
        p0, p1 = ao_loc[shl0], ao_loc[shl1]
        for i in range(nset):
            # MRH 05/21/2020: De-vectorize this because array contiguity -> parallel scaling
            v = lib.dot(int3c.reshape(nao, -1, order='F').T,
                        orbor[i]).reshape(naux, (p1 - p0) * nocc[i])
            t2 = logger.timer_debug1(mf_grad,
                                     'df grad einsum (P|mn) u_ni N_i = v_Pmi',
                                     *t2)
            rhoj[i] += numpy.dot(v, orbol[i][p0:p1].ravel())
            t2 = logger.timer_debug1(mf_grad,
                                     'df grad einsum v_Pmi u_mi = rho_P', *t2)
            v = scipy.linalg.cho_solve(int2c, v)
            t2 = logger.timer_debug1(mf_grad,
                                     'df grad cho_solve (P|Q) D_Qmi = v_Pmi',
                                     *t2)
            f_rhok['%s/%s' % (i, istep)] = v.reshape(naux, p1 - p0, -1)
            t2 = logger.timer_debug1(
                mf_grad,
                'df grad cache D_Pmi (m <-> i transpose upon retrieval)', *t2)
        int3c = v = None

    rhoj = scipy.linalg.cho_solve(int2c, rhoj.T).T
    int2c = None
    t1 = logger.timer_debug1(
        mf_grad, 'df grad vj and vk AO (P|Q) D_Q = (P|mn) D_mn solve', *t1)

    def load(set_id, p0, p1):
        buf = numpy.empty((p1 - p0, nocc[set_id], nao))
        col1 = 0
        for istep in range(nsteps):
            dat = f_rhok['%s/%s' % (set_id, istep)][p0:p1]
            col0, col1 = col1, col1 + dat.shape[1]
            buf[:p1 - p0, :, col0:col1] = dat.transpose(0, 2, 1)
        return buf

    vj = numpy.zeros((nset, 3, nao, nao))
    vk = numpy.zeros((nset, 3, nao, nao))
    # (d/dX i,j|P)
    fmmm = _ao2mo.libao2mo.AO2MOmmm_bra_nr_s1  # MO output index slower than AO output index; input AOs are asymmetric
    fdrv = _ao2mo.libao2mo.AO2MOnr_e2_drv  # comp and aux indices are slower
    ftrans = _ao2mo.libao2mo.AO2MOtranse2_nr_s1  # input is not tril_packed
    null = lib.c_null_ptr()
    t2 = t1
    for shl0, shl1, nL in ao_ranges:
        int3c = get_int3c_ip1((0, nbas, 0, nbas, shl0,
                               shl1)).transpose(0, 3, 2,
                                                1)  # (P|mn'), row-major order
        t2 = logger.timer_debug1(mf_grad, "df grad intor (P|mn')", *t2)
        p0, p1 = aux_loc[shl0], aux_loc[shl1]
        for i in range(nset):
            # MRH 05/21/2020: De-vectorize this because array contiguity -> parallel scaling
            vj[i, 0] += numpy.dot(rhoj[i, p0:p1],
                                  int3c[0].reshape(p1 - p0,
                                                   -1)).reshape(nao, nao).T
            vj[i, 1] += numpy.dot(rhoj[i, p0:p1],
                                  int3c[1].reshape(p1 - p0,
                                                   -1)).reshape(nao, nao).T
            vj[i, 2] += numpy.dot(rhoj[i, p0:p1],
                                  int3c[2].reshape(p1 - p0,
                                                   -1)).reshape(nao, nao).T
            t2 = logger.timer_debug1(mf_grad,
                                     "df grad einsum rho_P (P|mn') rho_P", *t2)
            tmp = numpy.empty((3, p1 - p0, nocc[i], nao),
                              dtype=orbol_stack.dtype)
            fdrv(
                ftrans,
                fmmm,  # xPmn u_mi -> xPin
                tmp.ctypes.data_as(ctypes.c_void_p),
                int3c.ctypes.data_as(ctypes.c_void_p),
                orbol[i].ctypes.data_as(ctypes.c_void_p),
                ctypes.c_int(3 * (p1 - p0)),
                ctypes.c_int(nao),
                (ctypes.c_int * 4)(0, nocc[i], 0, nao),
                null,
                ctypes.c_int(0))
            t2 = logger.timer_debug1(mf_grad,
                                     "df grad einsum (P|mn') u_mi = dg_Pin",
                                     *t2)
            rhok = load(i, p0, p1)
            vk[i] += lib.einsum('xpoi,pok->xik', tmp, rhok)
            t2 = logger.timer_debug1(mf_grad,
                                     "df grad einsum D_Pim dg_Pin = v_ij", *t2)
            rhok = tmp = None
        int3c = None
    t1 = logger.timer_debug1(mf_grad, 'df grad vj and vk AO (P|mn) D_P eval',
                             *t1)

    if mf_grad.auxbasis_response:
        # Cache (P|uv) D_ui c_vj. Must be include both upper and lower triangles
        # over nset.
        max_memory = mf_grad.max_memory - lib.current_memory()[0]
        blksize = int(
            min(max(max_memory * .5e6 / 8 / (nao * max(nocc)), 20), naux))
        rhok_oo = []
        for i, j in product(range(nset), repeat=2):
            tmp = numpy.empty((naux, nocc[i], nocc[j]))
            for p0, p1 in lib.prange(0, naux, blksize):
                rhok = load(i, p0, p1).reshape((p1 - p0) * nocc[i], nao)
                tmp[p0:p1] = lib.dot(rhok,
                                     orbol[j]).reshape(p1 - p0, nocc[i],
                                                       nocc[j])
            rhok_oo.append(tmp)
            rhok = tmp = None
        t1 = logger.timer_debug1(
            mf_grad, 'df grad vj and vk aux d_Pim u_mj = d_Pij eval', *t1)

        vjaux = numpy.zeros((nset, nset, 3, naux))
        vkaux = numpy.zeros((nset, nset, 3, naux))
        # (i,j|d/dX P)
        t2 = t1
        fmmm = _ao2mo.libao2mo.AO2MOmmm_bra_nr_s2  # MO output index slower than AO output index; input AOs are symmetric
        fdrv = _ao2mo.libao2mo.AO2MOnr_e2_drv  # comp and aux indices are slower
        ftrans = _ao2mo.libao2mo.AO2MOtranse2_nr_s2  # input is tril_packed
        null = lib.c_null_ptr()
        for shl0, shl1, nL in ao_ranges:
            int3c = get_int3c_ip2((0, nbas, 0, nbas, shl0, shl1))  # (i,j|P)
            t2 = logger.timer_debug1(mf_grad, "df grad intor (P'|mn)", *t2)
            p0, p1 = aux_loc[shl0], aux_loc[shl1]
            drhoj = lib.dot(
                int3c.transpose(0, 2, 1).reshape(3 * (p1 - p0), -1),
                dm_tril.T).reshape(3, p1 - p0, -1)  # xpij,mij->xpm
            vjaux[:, :, :, p0:p1] = lib.einsum('xpm,np->mnxp', drhoj,
                                               rhoj[:, p0:p1])
            t2 = logger.timer_debug1(
                mf_grad, "df grad einsum rho_P (P'|mn) D_mn = v_P", *t2)
            tmp = [
                numpy.empty((3, p1 - p0, nocc_i, nao), dtype=orbor_stack.dtype)
                for nocc_i in nocc
            ]
            assert (orbor_stack.flags.f_contiguous), '{} {}'.format(
                orbor_stack.shape, orbor_stack.strides)
            for orb, buf, nocc_i in zip(orbol, tmp, nocc):
                fdrv(
                    ftrans,
                    fmmm,  # gPmn u_ni -> gPim
                    buf.ctypes.data_as(ctypes.c_void_p),
                    int3c.ctypes.data_as(ctypes.c_void_p),
                    orb.ctypes.data_as(ctypes.c_void_p),
                    ctypes.c_int(3 * (p1 - p0)),
                    ctypes.c_int(nao),
                    (ctypes.c_int * 4)(0, nocc_i, 0, nao),
                    null,
                    ctypes.c_int(0))
            int3c = [[
                lib.dot(buf.reshape(-1, nao),
                        orb).reshape(3, p1 - p0, -1, norb)
                for orb, norb in zip(orbor, nocc)
            ] for buf in tmp]  # pim,mj,j -> pij
            t2 = logger.timer_debug1(
                mf_grad, "df grad einsum (P'|mn) u_mi u_nj N_j = v_Pmn", *t2)
            for i, j in product(range(nset), repeat=2):
                k = (i * nset) + j
                tmp = rhok_oo[k][p0:p1]
                vkaux[i, j, :, p0:p1] += lib.einsum('xpij,pij->xp',
                                                    int3c[i][j], tmp)
                t2 = logger.timer_debug1(mf_grad,
                                         "df grad einsum d_Pij v_Pij = v_P",
                                         *t2)
        int3c = tmp = None
        t1 = logger.timer_debug1(mf_grad, "df grad vj and vk aux (P'|mn) eval",
                                 *t1)

        # (d/dX P|Q)
        int2c_e1 = auxmol.intor('int2c2e_ip1')
        vjaux -= lib.einsum('xpq,mp,nq->mnxp', int2c_e1, rhoj, rhoj)
        for i, j in product(range(nset), repeat=2):
            k = (i * nset) + j
            l = (j * nset) + i
            tmp = lib.einsum('pij,qji->pq', rhok_oo[k], rhok_oo[l])
            vkaux[i, j] -= lib.einsum('xpq,pq->xp', int2c_e1, tmp)
        t1 = logger.timer_debug1(mf_grad, "df grad vj and vk aux (P'|Q) eval",
                                 *t1)

        vjaux = numpy.array([
            -vjaux[:, :, :, p0:p1].sum(axis=3) for p0, p1 in auxslices[:, 2:]
        ])
        vkaux = numpy.array([
            -vkaux[:, :, :, p0:p1].sum(axis=3) for p0, p1 in auxslices[:, 2:]
        ])
        if ishf:
            vjaux = vjaux.sum((1, 2))
            idx = numpy.array(list(range(nset))) * (nset + 1)
            vkaux = vkaux.reshape((nset**2, 3, mol.natm))[idx, :, :].sum(0)
        else:
            vjaux = numpy.ascontiguousarray(vjaux.transpose(1, 2, 0, 3))
            vkaux = numpy.ascontiguousarray(vkaux.transpose(1, 2, 0, 3))
        vj = lib.tag_array(-vj.reshape(out_shape), aux=numpy.array(vjaux))
        vk = lib.tag_array(-vk.reshape(out_shape), aux=numpy.array(vkaux))
    else:
        vj = -vj.reshape(out_shape)
        vk = -vk.reshape(out_shape)
    logger.timer(mf_grad, 'df grad vj and vk', *t0)
    return vj, vk
示例#35
0
文件: kccsd.py 项目: quansilong/pyscf
def _make_eris_incore(cc, mo_coeff=None):
    from pyscf.pbc import tools
    from pyscf.pbc.cc.ccsd import _adjust_occ

    log = logger.Logger(cc.stdout, cc.verbose)
    cput0 = (time.clock(), time.time())
    eris = gccsd._PhysicistsERIs()
    cell = cc._scf.cell
    kpts = cc.kpts
    nkpts = cc.nkpts
    nocc = cc.nocc
    nmo = cc.nmo
    nvir = nmo - nocc
    eris.nocc = nocc

    #if any(nocc != numpy.count_nonzero(cc._scf.mo_occ[k] > 0) for k in range(nkpts)):
    #    raise NotImplementedError('Different occupancies found for different k-points')

    if mo_coeff is None:
        mo_coeff = cc.mo_coeff

    nao = mo_coeff[0].shape[0]
    dtype = mo_coeff[0].dtype

    moidx = get_frozen_mask(cc)
    nocc_per_kpt = numpy.asarray(get_nocc(cc, per_kpoint=True))
    nmo_per_kpt = numpy.asarray(get_nmo(cc, per_kpoint=True))

    padded_moidx = []
    for k in range(nkpts):
        kpt_nocc = nocc_per_kpt[k]
        kpt_nvir = nmo_per_kpt[k] - kpt_nocc
        kpt_padded_moidx = numpy.concatenate(
            (numpy.ones(kpt_nocc, dtype=numpy.bool),
             numpy.zeros(nmo - kpt_nocc - kpt_nvir, dtype=numpy.bool),
             numpy.ones(kpt_nvir, dtype=numpy.bool)))
        padded_moidx.append(kpt_padded_moidx)

    eris.mo_coeff = []
    eris.orbspin = []
    # Generate the molecular orbital coefficients with the frozen orbitals masked.
    # Each MO is tagged with orbspin, a list of 0's and 1's that give the overall
    # spin of each MO.
    #
    # Here we will work with two index arrays; one is for our original (small) moidx
    # array while the next is for our new (large) padded array.
    for k in range(nkpts):
        kpt_moidx = moidx[k]
        kpt_padded_moidx = padded_moidx[k]

        mo = numpy.zeros((nao, nmo), dtype=dtype)
        mo[:, kpt_padded_moidx] = mo_coeff[k][:, kpt_moidx]
        if getattr(mo_coeff[k], 'orbspin', None) is not None:
            orbspin_dtype = mo_coeff[k].orbspin[kpt_moidx].dtype
            orbspin = numpy.zeros(nmo, dtype=orbspin_dtype)
            orbspin[kpt_padded_moidx] = mo_coeff[k].orbspin[kpt_moidx]
            mo = lib.tag_array(mo, orbspin=orbspin)
            eris.orbspin.append(orbspin)
        # FIXME: What if the user freezes all up spin orbitals in
        # an RHF calculation?  The number of electrons will still be
        # even.
        else:  # guess orbital spin - assumes an RHF calculation
            assert (numpy.count_nonzero(kpt_moidx) % 2 == 0)
            orbspin = numpy.zeros(mo.shape[1], dtype=int)
            orbspin[1::2] = 1
            mo = lib.tag_array(mo, orbspin=orbspin)
            eris.orbspin.append(orbspin)
        eris.mo_coeff.append(mo)

    # Re-make our fock MO matrix elements from density and fock AO
    dm = cc._scf.make_rdm1(cc.mo_coeff, cc.mo_occ)
    with lib.temporary_env(cc._scf, exxdiv=None):
        # _scf.exxdiv affects eris.fock. HF exchange correction should be
        # excluded from the Fock matrix.
        vhf = cc._scf.get_veff(cell, dm)
    fockao = cc._scf.get_hcore() + vhf
    eris.fock = numpy.asarray([
        reduce(numpy.dot, (mo.T.conj(), fockao[k], mo))
        for k, mo in enumerate(eris.mo_coeff)
    ])
    eris.e_hf = cc._scf.energy_tot(dm=dm, vhf=vhf)

    eris.mo_energy = [eris.fock[k].diagonal().real for k in range(nkpts)]
    # Add HFX correction in the eris.mo_energy to improve convergence in
    # CCSD iteration. It is useful for the 2D systems since their occupied and
    # the virtual orbital energies may overlap which may lead to numerical
    # issue in the CCSD iterations.
    # FIXME: Whether to add this correction for other exxdiv treatments?
    # Without the correction, MP2 energy may be largely off the correct value.
    madelung = tools.madelung(cell, kpts)
    eris.mo_energy = [
        _adjust_occ(mo_e, nocc, -madelung)
        for k, mo_e in enumerate(eris.mo_energy)
    ]

    # Get location of padded elements in occupied and virtual space.
    nocc_per_kpt = get_nocc(cc, per_kpoint=True)
    nonzero_padding = padding_k_idx(cc, kind="joint")

    # Check direct and indirect gaps for possible issues with CCSD convergence.
    mo_e = [eris.mo_energy[kp][nonzero_padding[kp]] for kp in range(nkpts)]
    mo_e = numpy.sort([y for x in mo_e for y in x])  # Sort de-nested array
    gap = mo_e[numpy.sum(nocc_per_kpt)] - mo_e[numpy.sum(nocc_per_kpt) - 1]
    if gap < 1e-5:
        logger.warn(
            cc, 'H**O-LUMO gap %s too small for KCCSD. '
            'May cause issues in convergence.', gap)

    kconserv = kpts_helper.get_kconserv(cell, kpts)
    if getattr(mo_coeff[0], 'orbspin', None) is None:
        # The bottom nao//2 coefficients are down (up) spin while the top are up (down).
        mo_a_coeff = [mo[:nao // 2] for mo in eris.mo_coeff]
        mo_b_coeff = [mo[nao // 2:] for mo in eris.mo_coeff]

        eri = numpy.empty((nkpts, nkpts, nkpts, nmo, nmo, nmo, nmo),
                          dtype=numpy.complex128)
        fao2mo = cc._scf.with_df.ao2mo
        for kp, kq, kr in kpts_helper.loop_kkk(nkpts):
            ks = kconserv[kp, kq, kr]
            eri_kpt = fao2mo((mo_a_coeff[kp], mo_a_coeff[kq], mo_a_coeff[kr],
                              mo_a_coeff[ks]),
                             (kpts[kp], kpts[kq], kpts[kr], kpts[ks]),
                             compact=False)
            eri_kpt += fao2mo((mo_b_coeff[kp], mo_b_coeff[kq], mo_b_coeff[kr],
                               mo_b_coeff[ks]),
                              (kpts[kp], kpts[kq], kpts[kr], kpts[ks]),
                              compact=False)
            eri_kpt += fao2mo((mo_a_coeff[kp], mo_a_coeff[kq], mo_b_coeff[kr],
                               mo_b_coeff[ks]),
                              (kpts[kp], kpts[kq], kpts[kr], kpts[ks]),
                              compact=False)
            eri_kpt += fao2mo((mo_b_coeff[kp], mo_b_coeff[kq], mo_a_coeff[kr],
                               mo_a_coeff[ks]),
                              (kpts[kp], kpts[kq], kpts[kr], kpts[ks]),
                              compact=False)

            eri_kpt = eri_kpt.reshape(nmo, nmo, nmo, nmo)
            eri[kp, kq, kr] = eri_kpt
    else:
        mo_a_coeff = [mo[:nao // 2] + mo[nao // 2:] for mo in eris.mo_coeff]

        eri = numpy.empty((nkpts, nkpts, nkpts, nmo, nmo, nmo, nmo),
                          dtype=numpy.complex128)
        fao2mo = cc._scf.with_df.ao2mo
        for kp, kq, kr in kpts_helper.loop_kkk(nkpts):
            ks = kconserv[kp, kq, kr]
            eri_kpt = fao2mo((mo_a_coeff[kp], mo_a_coeff[kq], mo_a_coeff[kr],
                              mo_a_coeff[ks]),
                             (kpts[kp], kpts[kq], kpts[kr], kpts[ks]),
                             compact=False)

            eri_kpt[(eris.orbspin[kp][:, None] !=
                     eris.orbspin[kq]).ravel()] = 0
            eri_kpt[:,
                    (eris.orbspin[kr][:,
                                      None] != eris.orbspin[ks]).ravel()] = 0
            eri_kpt = eri_kpt.reshape(nmo, nmo, nmo, nmo)
            eri[kp, kq, kr] = eri_kpt

    # Check some antisymmetrized properties of the integrals
    if DEBUG:
        check_antisymm_3412(cc, cc.kpts, eri)

    # Antisymmetrizing (pq|rs)-(ps|rq), where the latter integral is equal to
    # (rq|ps); done since we aren't tracking the kpoint of orbital 's'
    eri = eri - eri.transpose(2, 1, 0, 5, 4, 3, 6)
    # Chemist -> physics notation
    eri = eri.transpose(0, 2, 1, 3, 5, 4, 6)

    # Set the various integrals
    eris.dtype = eri.dtype
    eris.oooo = eri[:, :, :, :nocc, :nocc, :nocc, :nocc].copy() / nkpts
    eris.ooov = eri[:, :, :, :nocc, :nocc, :nocc, nocc:].copy() / nkpts
    eris.ovoo = eri[:, :, :, :nocc, nocc:, :nocc, :nocc].copy() / nkpts
    eris.oovv = eri[:, :, :, :nocc, :nocc, nocc:, nocc:].copy() / nkpts
    eris.ovov = eri[:, :, :, :nocc, nocc:, :nocc, nocc:].copy() / nkpts
    eris.ovvv = eri[:, :, :, :nocc, nocc:, nocc:, nocc:].copy() / nkpts
    eris.vvvv = eri[:, :, :, nocc:, nocc:, nocc:, nocc:].copy() / nkpts

    log.timer('CCSD integral transformation', *cput0)
    return eris
示例#36
0
def kernel(ot,
           oneCDMs_amo,
           twoCDM_amo,
           mo_coeff,
           ncore,
           ncas,
           max_memory=20000,
           hermi=1,
           veff2_mo=None,
           paaa_only=False):
    ''' Get the 1- and 2-body effective potential from MC-PDFT. Eventually I'll be able to specify
        mo slices for the 2-body part

        Args:
            ot : an instance of otfnal class
            oneCDMs_amo : ndarray of shape (2, ncas, ncas)
                containing spin-separated one-body density matrices
            twoCDM_amo : ndarray of shape (ncas, ncas, ncas, ncas)
                containing spin-summed two-body cumulant density matrix in an active space
            ao2amo : ndarray of shape (nao, ncas)
                containing molecular orbital coefficients for active-space orbitals

        Kwargs:
            max_memory : int or float
                maximum cache size in MB
                default is 20000
            hermi : int
                1 if 1CDMs are assumed hermitian, 0 otherwise

        Returns : float
            The MC-PDFT on-top exchange-correlation energy

    '''
    if veff2_mo is not None:
        raise NotImplementedError(
            'Molecular orbital slices for the two-body part')
    nocc = ncore + ncas
    ni, xctype, dens_deriv = ot._numint, ot.xctype, ot.dens_deriv
    norbs_ao = mo_coeff.shape[0]
    mo_core = mo_coeff[:, :ncore]
    ao2amo = mo_coeff[:, ncore:nocc]
    npair = norbs_ao * (norbs_ao + 1) // 2

    veff1 = np.zeros((norbs_ao, norbs_ao), dtype=oneCDMs_amo.dtype)
    veff2 = _ERIS(ot.mol,
                  mo_coeff,
                  ncore,
                  ncas,
                  paaa_only=paaa_only,
                  verbose=ot.verbose,
                  stdout=ot.stdout)

    t0 = (time.clock(), time.time())
    dm_core = mo_core @ mo_core.T
    dm_cas = np.dot(ao2amo, np.dot(oneCDMs_amo, ao2amo.T)).transpose(1, 0, 2)
    dm1s = dm_cas + dm_core[None, :, :]
    dm_core *= 2
    # Can't trust that NOs are the same for alpha and beta. Have to do this explicitly here
    # Begin tag block: dm_core
    imo_occ = np.ones(ncore, dtype=dm_core.dtype) * 2.0
    dm_core = tag_array(dm_core, mo_coeff=mo_core, mo_occ=imo_occ)
    # Begin tag block: dm_cas
    amo_occ = np.zeros((2, ncas), dtype=dm_cas.dtype)
    amo_coeff = np.stack([ao2amo.copy(), ao2amo.copy()], axis=0)
    for i in range(2):
        amo_occ[i], ua = linalg.eigh(oneCDMs_amo[i])
        amo_coeff[i] = amo_coeff[i] @ ua
    dm_cas = tag_array(dm_cas, mo_coeff=amo_coeff, mo_occ=amo_occ)
    # Begin tag block: dm1s
    mo_occ = np.zeros((2, nocc), dtype=dm1s.dtype)
    mo_occ[:, :ncore] = 1.0
    mo_occ[:, ncore:nocc] = amo_occ
    tag_coeff = np.stack(
        (mo_coeff[:, :nocc].copy(), mo_coeff[:, :nocc].copy()), axis=0)
    tag_coeff[:, :, ncore:nocc] = amo_coeff
    dm1s = tag_array(dm1s, mo_coeff=tag_coeff, mo_occ=mo_occ)
    # End tag block
    make_rho_c, nset_c, nao_c = ni._gen_rho_evaluator(ot.mol, dm_core, hermi)
    make_rho_a, nset_a, nao_a = ni._gen_rho_evaluator(ot.mol, dm_cas, hermi)
    make_rho, nset, nao = ni._gen_rho_evaluator(ot.mol, dm1s, hermi)
    gc.collect()
    remaining_floats = (max_memory - current_memory()[0]) * 1e6 / 8
    nderiv_rho = (1, 4, 10)[dens_deriv]  # ?? for meta-GGA
    nderiv_Pi = (1, 4)[ot.Pi_deriv]
    ncols_v2 = norbs_ao * ncas + ncas**2 if paaa_only else 2 * norbs_ao * ncas
    ncols = 1 + nderiv_rho * (5 + norbs_ao * 2) + nderiv_Pi * (1 + ncols_v2)
    pdft_blksize = int(
        remaining_floats /
        (ncols * BLKSIZE)) * BLKSIZE  # something something indexing
    if ot.grids.coords is None:
        ot.grids.build(with_non0tab=True)
    ngrids = ot.grids.coords.shape[0]
    pdft_blksize = max(BLKSIZE, min(pdft_blksize, ngrids, BLKSIZE * 1200))
    logger.debug(
        ot,
        '{} MB used of {} available; block size of {} chosen for grid with {} points'
        .format(current_memory()[0], max_memory, pdft_blksize, ngrids))
    shls_slice = (0, ot.mol.nbas)
    ao_loc = ot.mol.ao_loc_nr()
    for ao, mask, weight, coords in ni.block_loop(ot.mol,
                                                  ot.grids,
                                                  norbs_ao,
                                                  dens_deriv,
                                                  max_memory,
                                                  blksize=pdft_blksize):
        rho = np.asarray([make_rho(i, ao, mask, xctype) for i in range(2)])
        rho_a = np.asarray([make_rho_a(i, ao, mask, xctype) for i in range(2)])
        rho_c = make_rho_c(0, ao, mask, xctype)
        t0 = logger.timer(ot, 'untransformed densities (core and total)', *t0)
        Pi = get_ontop_pair_density(ot, rho, ao, dm1s, twoCDM_amo, ao2amo,
                                    dens_deriv, mask)
        t0 = logger.timer(ot, 'on-top pair density calculation', *t0)
        eot, vrho, vPi = ot.eval_ot(rho, Pi, weights=weight)
        t0 = logger.timer(ot, 'effective potential kernel calculation', *t0)
        veff1 += ot.get_veff_1body(rho,
                                   Pi,
                                   ao,
                                   weight,
                                   non0tab=mask,
                                   shls_slice=shls_slice,
                                   ao_loc=ao_loc,
                                   hermi=1,
                                   kern=vrho)
        t0 = logger.timer(ot, '1-body effective potential calculation', *t0)
        #ao[:,:,:] = np.tensordot (ao, mo_coeff, axes=1)
        #t0 = logger.timer (ot, 'ao2mo grid points', *t0)
        veff2._accumulate(ot, rho, Pi, ao, weight, rho_c, rho_a, vPi, mask,
                          shls_slice, ao_loc)
        t0 = logger.timer(ot, '2-body effective potential calculation', *t0)
    veff2._finalize()
    t0 = logger.timer(ot, 'Finalizing 2-body effective potential calculation',
                      *t0)
    return veff1, veff2
示例#37
0
 def rotate_mo(self, mo, u, log=None):
     '''Rotate orbitals with the given unitary matrix'''
     mo = mc1step.CASSCF.rotate_mo(self, mo, u, log)
     mo = lib.tag_array(mo, orbsym=self.mo_coeff.orbsym)
     return mo
示例#38
0
def get_veff(ks, mol=None, dm=None, dm_last=0, vhf_last=0, hermi=1):
    '''Coulomb + XC functional for UKS.  See pyscf/dft/rks.py
    :func:`get_veff` fore more details.
    '''
    if mol is None: mol = ks.mol
    if dm is None: dm = ks.make_rdm1()
    if not isinstance(dm, numpy.ndarray):
        dm = numpy.asarray(dm)
    if dm.ndim == 2:  # RHF DM
        dm = numpy.asarray((dm * .5, dm * .5))
    ground_state = (dm.ndim == 3 and dm.shape[0] == 2)

    t0 = (logger.process_clock(), logger.perf_counter())

    if ks.grids.coords is None:
        ks.grids.build(with_non0tab=True)
        if ks.small_rho_cutoff > 1e-20 and ground_state:
            ks.grids = rks.prune_small_rho_grids_(ks, mol, dm[0] + dm[1],
                                                  ks.grids)
        t0 = logger.timer(ks, 'setting up grids', *t0)
    if ks.nlc != '':
        if ks.nlcgrids.coords is None:
            ks.nlcgrids.build(with_non0tab=True)
            if ks.small_rho_cutoff > 1e-20 and ground_state:
                ks.nlcgrids = rks.prune_small_rho_grids_(
                    ks, mol, dm[0] + dm[1], ks.nlcgrids)
            t0 = logger.timer(ks, 'setting up nlc grids', *t0)

    ni = ks._numint
    if hermi == 2:  # because rho = 0
        n, exc, vxc = (0, 0), 0, 0
    else:
        max_memory = ks.max_memory - lib.current_memory()[0]
        n, exc, vxc = ni.nr_uks(mol,
                                ks.grids,
                                ks.xc,
                                dm,
                                max_memory=max_memory)
        if ks.nlc:
            assert 'VV10' in ks.nlc.upper()
            _, enlc, vnlc = ni.nr_rks(mol,
                                      ks.nlcgrids,
                                      ks.xc + '__' + ks.nlc,
                                      dm[0] + dm[1],
                                      max_memory=max_memory)
            exc += enlc
            vxc += vnlc
        logger.debug(ks, 'nelec by numeric integration = %s', n)
        t0 = logger.timer(ks, 'vxc', *t0)

    #enabling range-separated hybrids
    omega, alpha, hyb = ni.rsh_and_hybrid_coeff(ks.xc, spin=mol.spin)

    if abs(hyb) < 1e-10 and abs(alpha) < 1e-10:
        vk = None
        if (ks._eri is None and ks.direct_scf
                and getattr(vhf_last, 'vj', None) is not None):
            ddm = numpy.asarray(dm) - numpy.asarray(dm_last)
            vj = ks.get_j(mol, ddm[0] + ddm[1], hermi)
            vj += vhf_last.vj
        else:
            vj = ks.get_j(mol, dm[0] + dm[1], hermi)
        vxc += vj
    else:
        if (ks._eri is None and ks.direct_scf
                and getattr(vhf_last, 'vk', None) is not None):
            ddm = numpy.asarray(dm) - numpy.asarray(dm_last)
            vj, vk = ks.get_jk(mol, ddm, hermi)
            vk *= hyb
            if abs(omega) > 1e-10:
                vklr = ks.get_k(mol, ddm, hermi, omega)
                vklr *= (alpha - hyb)
                vk += vklr
            vj = vj[0] + vj[1] + vhf_last.vj
            vk += vhf_last.vk
        else:
            vj, vk = ks.get_jk(mol, dm, hermi)
            vj = vj[0] + vj[1]
            vk *= hyb
            if abs(omega) > 1e-10:
                vklr = ks.get_k(mol, dm, hermi, omega)
                vklr *= (alpha - hyb)
                vk += vklr
        vxc += vj - vk

        if ground_state:
            exc -= (numpy.einsum('ij,ji', dm[0], vk[0]).real +
                    numpy.einsum('ij,ji', dm[1], vk[1]).real) * .5
    if ground_state:
        ecoul = numpy.einsum('ij,ji', dm[0] + dm[1], vj).real * .5
    else:
        ecoul = None

    vxc = lib.tag_array(vxc, ecoul=ecoul, exc=exc, vj=vj, vk=vk)
    return vxc
示例#39
0
文件: casci.py 项目: sarminh/pyscf
def canonicalize(mc,
                 mo_coeff=None,
                 ci=None,
                 eris=None,
                 sort=False,
                 cas_natorb=False,
                 casdm1=None,
                 verbose=logger.NOTE,
                 with_meta_lowdin=WITH_META_LOWDIN):
    '''Canonicalized CASCI/CASSCF orbitals of effecitive Fock matrix and
    update CI coefficients accordingly.

    Effective Fock matrix is built with one-particle density matrix (see
    also :func:`mcscf.casci.get_fock`). For state-average CASCI/CASSCF object,
    the canonicalized orbitals are based on the state-average density matrix.
    To obtain canonicalized orbitals for an individual state, you need to pass
    "casdm1" of the specific state to this function.

    Args:
        mc: a CASSCF/CASCI object or RHF object

    Kwargs:
        mo_coeff (ndarray): orbitals that span the core, active and external
            space.
        ci (ndarray): CI coefficients (or objects to represent the CI
            wavefunctions in DMRG/QMC-MCSCF calculations).
        eris: Integrals for the MCSCF object. Input this object to reduce the
            overhead of computing integrals. It can be generated by
            :func:`mc.ao2mo` method.
        sort (bool): Whether the canonicalized orbitals are sorted based on
            the orbital energy (diagonal part of the effective Fock matrix)
            within each subspace (core, active, external). If point group
            symmetry is not available in the system, orbitals are always
            sorted. When point group symmetry is available, sort=False will
            preserve the symmetry label of input orbitals and only sort the
            orbitals in each symmetry sector. sort=True will reorder all
            orbitals over all symmetry sectors in each subspace and the
            symmetry labels may be changed.
        cas_natorb (bool): Whether to transform active orbitals to natual
            orbitals. If enabled, the output orbitals in active space are
            transformed to natural orbitals and CI coefficients are updated
            accordingly.
        casdm1 (ndarray): 1-particle density matrix in active space. This
            density matrix is used to build effective fock matrix. Without
            input casdm1, the density matrix is computed with the input ci
            coefficients/object. If neither ci nor casdm1 were given, density
            matrix is computed by :func:`mc.fcisolver.make_rdm1` method. For
            state-average CASCI/CASCF calculation, this results in a set of
            canonicalized orbitals of state-average effective Fock matrix.
            To canonicalize the orbitals for one particular state, you can
            assign the density matrix of that state to the kwarg casdm1.

    Returns:
        A tuple, (natural orbitals, CI coefficients, orbital energies)
        The orbital energies are the diagonal terms of effective Fock matrix.
    '''
    from pyscf.lo import orth
    from pyscf.tools import dump_mat
    from pyscf.mcscf import addons
    log = logger.new_logger(mc, verbose)

    if mo_coeff is None: mo_coeff = mc.mo_coeff
    if ci is None: ci = mc.ci
    if casdm1 is None:
        if (isinstance(ci, (list, tuple)) and
                not isinstance(mc.fcisolver, addons.StateAverageFCISolver)):
            log.warn('Mulitple states found in CASCI solver. First state is '
                     'used to compute the natural orbitals in active space.')
            casdm1 = mc.fcisolver.make_rdm1(ci[0], mc.ncas, mc.nelecas)
        else:
            casdm1 = mc.fcisolver.make_rdm1(ci, mc.ncas, mc.nelecas)

    ncore = mc.ncore
    nocc = ncore + mc.ncas
    nmo = mo_coeff.shape[1]
    fock_ao = mc.get_fock(mo_coeff, ci, eris, casdm1, verbose)
    if cas_natorb:
        mo_coeff1, ci, occ = mc.cas_natorb(mo_coeff, ci, eris, sort, casdm1,
                                           verbose, with_meta_lowdin)
    else:
        # Keep the active space unchanged by default.  The rotation in active space
        # may cause problem for external CI solver eg DMRG.
        mo_coeff1 = mo_coeff.copy()
        log.info('Density matrix diagonal elements %s', casdm1.diagonal())

    fock = reduce(numpy.dot, (mo_coeff1.T, fock_ao, mo_coeff1))
    mo_energy = fock.diagonal().copy()

    mask = numpy.ones(nmo, dtype=bool)
    frozen = getattr(mc, 'frozen', None)
    if frozen is not None:
        if isinstance(frozen, (int, numpy.integer)):
            mask[:frozen] = False
        else:
            mask[frozen] = False
    core_idx = numpy.where(mask[:ncore])[0]
    vir_idx = numpy.where(mask[nocc:])[0] + nocc

    if getattr(mo_coeff, 'orbsym', None) is not None:
        orbsym = mo_coeff.orbsym
    else:
        orbsym = numpy.zeros(nmo, dtype=int)

    if len(core_idx) > 0:
        # note the last two args of ._eig for mc1step_symm
        # mc._eig function is called to handle symmetry adapated fock
        w, c1 = mc._eig(fock[core_idx[:, None], core_idx], 0, ncore,
                        orbsym[core_idx])
        if sort:
            idx = numpy.argsort(w.round(9), kind='mergesort')
            w = w[idx]
            c1 = c1[:, idx]
            orbsym[core_idx] = orbsym[core_idx][idx]
        mo_coeff1[:, core_idx] = numpy.dot(mo_coeff1[:, core_idx], c1)
        mo_energy[core_idx] = w

    if len(vir_idx) > 0:
        w, c1 = mc._eig(fock[vir_idx[:, None], vir_idx], nocc, nmo,
                        orbsym[vir_idx])
        if sort:
            idx = numpy.argsort(w.round(9), kind='mergesort')
            w = w[idx]
            c1 = c1[:, idx]
            orbsym[vir_idx] = orbsym[vir_idx][idx]
        mo_coeff1[:, vir_idx] = numpy.dot(mo_coeff1[:, vir_idx], c1)
        mo_energy[vir_idx] = w

    if getattr(mo_coeff, 'orbsym', None) is not None:
        mo_coeff1 = lib.tag_array(mo_coeff1, orbsym=orbsym)

    if log.verbose >= logger.DEBUG:
        for i in range(nmo):
            log.debug('i = %d  <i|F|i> = %12.8f', i + 1, mo_energy[i])


# still return ci coefficients, in case the canonicalization funciton changed
# cas orbitals, the ci coefficients should also be updated.
    return mo_coeff1, ci, mo_energy
示例#40
0
文件: casci.py 项目: sarminh/pyscf
def cas_natorb(mc,
               mo_coeff=None,
               ci=None,
               eris=None,
               sort=False,
               casdm1=None,
               verbose=None,
               with_meta_lowdin=WITH_META_LOWDIN):
    '''Transform active orbitals to natrual orbitals, and update the CI wfn
    accordingly

    Args:
        mc : a CASSCF/CASCI object or RHF object

    Kwargs:
        sort : bool
            Sort natural orbitals wrt the occupancy.

    Returns:
        A tuple, the first item is natural orbitals, the second is updated CI
        coefficients, the third is the natural occupancy associated to the
        natural orbitals.
    '''
    from pyscf.lo import orth
    from pyscf.tools import dump_mat
    from pyscf.tools.mo_mapping import mo_1to1map
    if mo_coeff is None: mo_coeff = mc.mo_coeff
    if ci is None: ci = mc.ci
    log = logger.new_logger(mc, verbose)
    ncore = mc.ncore
    ncas = mc.ncas
    nocc = ncore + ncas
    nelecas = mc.nelecas
    if casdm1 is None:
        casdm1 = mc.fcisolver.make_rdm1(ci, ncas, nelecas)
    # orbital symmetry is reserved in this _eig call
    occ, ucas = mc._eig(-casdm1, ncore, nocc)
    if sort:
        casorb_idx = numpy.argsort(occ.round(9), kind='mergesort')
        occ = occ[casorb_idx]
        ucas = ucas[:, casorb_idx]

    occ = -occ
    mo_occ = numpy.zeros(mo_coeff.shape[1])
    mo_occ[:ncore] = 2
    mo_occ[ncore:nocc] = occ

    mo_coeff1 = mo_coeff.copy()
    mo_coeff1[:, ncore:nocc] = numpy.dot(mo_coeff[:, ncore:nocc], ucas)
    if getattr(mo_coeff, 'orbsym', None) is not None:
        orbsym = numpy.copy(mo_coeff.orbsym)
        if sort:
            orbsym[ncore:nocc] = orbsym[ncore:nocc][casorb_idx]
        mo_coeff1 = lib.tag_array(mo_coeff1, orbsym=orbsym)

    fcivec = None
    if getattr(mc.fcisolver, 'transform_ci_for_orbital_rotation', None):
        if isinstance(ci, numpy.ndarray):
            fcivec = mc.fcisolver.transform_ci_for_orbital_rotation(
                ci, ncas, nelecas, ucas)
        elif (isinstance(ci, (tuple, list))
              and all(isinstance(x[0], numpy.ndarray) for x in ci)):
            fcivec = [
                mc.fcisolver.transform_ci_for_orbital_rotation(
                    x, ncas, nelecas, ucas) for x in ci
            ]

    if fcivec is None:
        log.info('FCI vector not available, call CASCI to update wavefunction')
        mocas = mo_coeff1[:, ncore:nocc]
        hcore = mc.get_hcore()
        dm_core = numpy.dot(mo_coeff1[:, :ncore] * 2, mo_coeff1[:, :ncore].T)
        ecore = mc.energy_nuc()
        ecore += numpy.einsum('ij,ji', hcore, dm_core)
        h1eff = reduce(numpy.dot, (mocas.T, hcore, mocas))
        if getattr(eris, 'ppaa', None) is not None:
            ecore += eris.vhf_c[:ncore, :ncore].trace()
            h1eff += reduce(numpy.dot,
                            (ucas.T, eris.vhf_c[ncore:nocc, ncore:nocc], ucas))
            aaaa = ao2mo.restore(4, eris.ppaa[ncore:nocc, ncore:nocc, :, :],
                                 ncas)
            aaaa = ao2mo.incore.full(aaaa, ucas)
        else:
            if getattr(mc, 'with_df', None):
                raise NotImplementedError('cas_natorb for DFCASCI/DFCASSCF')
            corevhf = mc.get_veff(mc.mol, dm_core)
            ecore += numpy.einsum('ij,ji', dm_core, corevhf) * .5
            h1eff += reduce(numpy.dot, (mocas.T, corevhf, mocas))
            aaaa = ao2mo.kernel(mc.mol, mocas)

        # See label_symmetry_ function in casci_symm.py which initialize the
        # orbital symmetry information in fcisolver.  This orbital symmetry
        # labels should be reordered to match the sorted active space orbitals.
        if sort and getattr(mo_coeff1, 'orbsym', None) is not None:
            mc.fcisolver.orbsym = mo_coeff1.orbsym[ncore:nocc]

        max_memory = max(400, mc.max_memory - lib.current_memory()[0])
        e, fcivec = mc.fcisolver.kernel(h1eff,
                                        aaaa,
                                        ncas,
                                        nelecas,
                                        ecore=ecore,
                                        max_memory=max_memory,
                                        verbose=log)
        log.debug('In Natural orbital, CASCI energy = %s', e)

    if log.verbose >= logger.INFO:
        ovlp_ao = mc._scf.get_ovlp()
        # where_natorb gives the new locations of the natural orbitals
        where_natorb = mo_1to1map(ucas)
        log.debug('where_natorb %s', str(where_natorb))
        log.info('Natural occ %s', str(occ))
        if with_meta_lowdin:
            log.info(
                'Natural orbital (expansion on meta-Lowdin AOs) in CAS space')
            label = mc.mol.ao_labels()
            orth_coeff = orth.orth_ao(mc.mol, 'meta_lowdin', s=ovlp_ao)
            mo_cas = reduce(numpy.dot,
                            (orth_coeff.T, ovlp_ao, mo_coeff1[:, ncore:nocc]))
        else:
            log.info('Natural orbital (expansion on AOs) in CAS space')
            label = mc.mol.ao_labels()
            mo_cas = mo_coeff1[:, ncore:nocc]
        dump_mat.dump_rec(log.stdout, mo_cas, label, start=1)

        if mc._scf.mo_coeff is not None:
            s = reduce(numpy.dot, (mo_coeff1[:, ncore:nocc].T,
                                   mc._scf.get_ovlp(), mc._scf.mo_coeff))
            idx = numpy.argwhere(abs(s) > .4)
            for i, j in idx:
                log.info('<CAS-nat-orb|mo-hf>  %d  %d  %12.8f', ncore + i + 1,
                         j + 1, s[i, j])
    return mo_coeff1, fcivec, mo_occ
示例#41
0
def get_veff(ks, mol=None, dm=None, dm_last=0, vhf_last=0, hermi=1):
    '''Coulomb + XC functional

    .. note::
        This function will change the ks object.

    Args:
        ks : an instance of :class:`RKS`
            XC functional are controlled by ks.xc attribute.  Attribute
            ks.grids might be initialized.
        dm : ndarray or list of ndarrays
            A density matrix or a list of density matrices

    Kwargs:
        dm_last : ndarray or a list of ndarrays or 0
            The density matrix baseline.  If not 0, this function computes the
            increment of HF potential w.r.t. the reference HF potential matrix.
        vhf_last : ndarray or a list of ndarrays or 0
            The reference Vxc potential matrix.
        hermi : int
            Whether J, K matrix is hermitian

            | 0 : no hermitian or symmetric
            | 1 : hermitian
            | 2 : anti-hermitian

    Returns:
        matrix Veff = J + Vxc.  Veff can be a list matrices, if the input
        dm is a list of density matrices.
    '''
    if mol is None: mol = ks.mol
    if dm is None: dm = ks.make_rdm1()
    t0 = (time.clock(), time.time())

    ground_state = (isinstance(dm, numpy.ndarray) and dm.ndim == 2)

    if ks.grids.coords is None:
        ks.grids.build(with_non0tab=True)
        if ks.small_rho_cutoff > 1e-20 and ground_state:
            ks.grids = rks.prune_small_rho_grids_(ks, mol, dm, ks.grids)
        t0 = logger.timer(ks, 'setting up grids', *t0)

    if hermi == 2:  # because rho = 0
        n, exc, vxc = 0, 0, 0
    else:
        max_memory = ks.max_memory - lib.current_memory()[0]
        n, exc, vxc = ks._numint.r_vxc(mol, ks.grids, ks.xc, dm, hermi=hermi,
                                       max_memory=max_memory)
        logger.debug(ks, 'nelec by numeric integration = %s', n)
        t0 = logger.timer(ks, 'vxc', *t0)

    omega, alpha, hyb = ks._numint.rsh_and_hybrid_coeff(ks.xc, spin=mol.spin)
    if abs(hyb) < 1e-10:
        vk = None
        if (ks._eri is None and ks.direct_scf and
            getattr(vhf_last, 'vj', None) is not None):
            ddm = numpy.asarray(dm) - numpy.asarray(dm_last)
            vj = ks.get_j(mol, ddm, hermi)
            vj += vhf_last.vj
        else:
            vj = ks.get_j(mol, dm, hermi)
        vxc += vj
    else:
        if (ks._eri is None and ks.direct_scf and
            getattr(vhf_last, 'vk', None) is not None):
            ddm = numpy.asarray(dm) - numpy.asarray(dm_last)
            vj, vk = ks.get_jk(mol, ddm, hermi)
            vk *= hyb
            if abs(omega) > 1e-10:  # For range separated Coulomb operator
                vklr = ks.get_k(mol, ddm, hermi, omega=omega)
                vklr *= (alpha - hyb)
                vk += vklr
            vj += vhf_last.vj
            vk += vhf_last.vk
        else:
            vj, vk = ks.get_jk(mol, dm, hermi)
            vk *= hyb
            if abs(omega) > 1e-10:
                vklr = ks.get_k(mol, dm, hermi, omega=omega)
                vklr *= (alpha - hyb)
                vk += vklr
        vxc += vj - vk

        if ground_state:
            exc -= numpy.einsum('ij,ji', dm, vk).real * hyb * .5

    if ground_state:
        ecoul = numpy.einsum('ij,ji', dm, vj).real * .5
    else:
        ecoul = None

    vxc = lib.tag_array(vxc, ecoul=ecoul, exc=exc, vj=vj, vk=vk)
    return vxc
示例#42
0
def get_veff(ks,
             cell=None,
             dm=None,
             dm_last=0,
             vhf_last=0,
             hermi=1,
             kpts=None,
             kpts_band=None):
    """
    Coulomb + XC functional + Hubbard U terms.

    .. note::
        This is a replica of pyscf.dft.rks.get_veff with kpts added.
        This function will change the ks object.

    Args:
        ks : an instance of :class:`RKS`
            XC functional are controlled by ks.xc attribute.  Attribute
            ks.grids might be initialized.
        dm : ndarray or list of ndarrays
            A density matrix or a list of density matrices

    Returns:
        Veff : (nkpts, nao, nao) or (*, nkpts, nao, nao) ndarray
        Veff = J + Vxc + V_U.
    """
    if cell is None: cell = ks.cell
    if dm is None: dm = ks.make_rdm1()
    if kpts is None: kpts = ks.kpts

    # J + V_xc
    vxc = krks.get_veff(ks,
                        cell=cell,
                        dm=dm,
                        dm_last=dm_last,
                        vhf_last=vhf_last,
                        hermi=hermi,
                        kpts=kpts,
                        kpts_band=kpts_band)

    # V_U
    C_ao_lo = ks.C_ao_lo
    ovlp = ks.get_ovlp()
    nkpts = len(kpts)
    nlo = C_ao_lo.shape[-1]

    rdm1_lo = np.zeros((nkpts, nlo, nlo), dtype=np.complex128)
    for k in range(nkpts):
        C_inv = np.dot(C_ao_lo[k].conj().T, ovlp[k])
        rdm1_lo[k] = mdot(C_inv, dm[k], C_inv.conj().T)

    E_U = 0.0
    weight = 1.0 / nkpts
    logger.info(ks, "-" * 79)
    with np.printoptions(precision=5, suppress=True, linewidth=1000):
        for idx, val, lab in zip(ks.U_idx, ks.U_val, ks.U_lab):
            lab_string = " "
            for l in lab:
                lab_string += "%9s" % (l.split()[-1])
            lab_sp = lab[0].split()
            logger.info(ks, "local rdm1 of atom %s: ",
                        " ".join(lab_sp[:2]) + " " + lab_sp[2][:2])
            U_mesh = np.ix_(idx, idx)
            P_loc = 0.0
            for k in range(nkpts):
                S_k = ovlp[k]
                C_k = C_ao_lo[k][:, idx]
                P_k = rdm1_lo[k][U_mesh]
                SC = np.dot(S_k, C_k)
                vxc[k] += mdot(SC, (np.eye(P_k.shape[-1]) - P_k) * (val * 0.5),
                               SC.conj().T).astype(vxc[k].dtype, copy=False)
                E_U += (val * 0.5) * (P_k.trace() -
                                      np.dot(P_k, P_k).trace() * 0.5)
                P_loc += P_k
            P_loc = P_loc.real / nkpts
            logger.info(ks, "%s\n%s", lab_string, P_loc)
            logger.info(ks, "-" * 79)

    E_U *= weight
    if E_U.real < 0.0 and all(np.asarray(ks.U_val) > 0):
        logger.warn(ks, "E_U (%s) is negative...", E_U.real)
    vxc = lib.tag_array(vxc, E_U=E_U)
    return vxc
示例#43
0
def get_nto(tdobj, state=1, threshold=OUTPUT_THRESHOLD, verbose=None):
    r'''
    Natural transition orbital analysis.

    The natural transition density matrix between ground state and excited
    state :math:`Tia = \langle \Psi_{ex} | i a^\dagger | \Psi_0 \rangle` can
    be transformed to diagonal form through SVD
    :math:`T = O \sqrt{\lambda} V^\dagger`. O and V are occupied and virtual
    natural transition orbitals. The diagonal elements :math:`\lambda` are the
    weights of the occupied-virtual orbital pair in the excitation.

    Ref: Martin, R. L., JCP, 118, 4775-4777

    Note in the TDHF/TDDFT calculations, the excitation part (X) is
    interpreted as the CIS coefficients and normalized to 1. The de-excitation
    part (Y) is ignored.

    Args:
        state : int
            Excited state ID.  state = 1 means the first excited state.
            If state < 0, state ID is counted from the last excited state.

    Kwargs:
        threshold : float
            Above which the NTO coefficients will be printed in the output.

    Returns:
        A list (weights, NTOs).  NTOs are natural orbitals represented in AO
        basis. The first N_occ NTOs are occupied NTOs and the rest are virtual
        NTOs.
    '''
    if state == 0:
        logger.warn(
            tdobj, 'Excited state starts from 1. '
            'Set state=1 for first excited state.')
        state_id = state
    elif state < 0:
        state_id = state
    else:
        state_id = state - 1

    mol = tdobj.mol
    mo_coeff = tdobj._scf.mo_coeff
    mo_occ = tdobj._scf.mo_occ
    orbo = mo_coeff[:, mo_occ == 2]
    orbv = mo_coeff[:, mo_occ == 0]
    nocc = orbo.shape[1]
    nvir = orbv.shape[1]

    cis_t1 = tdobj.xy[state_id][0]
    # TDDFT (X,Y) has X^2-Y^2=1.
    # Renormalizing X (X^2=1) to map it to CIS coefficients
    cis_t1 *= 1. / numpy.linalg.norm(cis_t1)

    # TODO: Comparing to the NTOs defined in JCP, 142, 244103.  JCP, 142, 244103
    # provides a method to incorporate the Y matrix in the transition density
    # matrix.  However, it may break the point group symmetry of the NTO orbitals
    # when the system has degenerated irreducible representations.

    if mol.symmetry:
        orbsym = hf_symm.get_orbsym(mol, mo_coeff)
        o_sym = orbsym[mo_occ == 2]
        v_sym = orbsym[mo_occ == 0]
        nto_o = numpy.eye(nocc)
        nto_v = numpy.eye(nvir)
        weights_o = numpy.zeros(nocc)
        weights_v = numpy.zeros(nvir)
        for ir in set(orbsym):
            idx = numpy.where(o_sym == ir)[0]
            if idx.size > 0:
                dm_oo = numpy.dot(cis_t1[idx], cis_t1[idx].T)
                weights_o[idx], nto_o[idx[:, None],
                                      idx] = numpy.linalg.eigh(dm_oo)

            idx = numpy.where(v_sym == ir)[0]
            if idx.size > 0:
                dm_vv = numpy.dot(cis_t1[:, idx].T, cis_t1[:, idx])
                weights_v[idx], nto_v[idx[:, None],
                                      idx] = numpy.linalg.eigh(dm_vv)

        # weights in descending order
        idx = numpy.argsort(-weights_o)
        weights_o = weights_o[idx]
        nto_o = nto_o[:, idx]
        o_sym = o_sym[idx]

        idx = numpy.argsort(-weights_v)
        weights_v = weights_v[idx]
        nto_v = nto_v[:, idx]
        v_sym = v_sym[idx]

        nto_orbsym = numpy.hstack((o_sym, v_sym))

        if nocc < nvir:
            weights = weights_o
        else:
            weights = weights_v

    else:
        nto_o, w, nto_vT = numpy.linalg.svd(cis_t1)
        nto_v = nto_vT.conj().T
        weights = w**2
        nto_orbsym = None

    idx = numpy.argmax(abs(nto_o.real), axis=0)
    nto_o[:, nto_o[idx, numpy.arange(nocc)].real < 0] *= -1
    idx = numpy.argmax(abs(nto_v.real), axis=0)
    nto_v[:, nto_v[idx, numpy.arange(nvir)].real < 0] *= -1

    occupied_nto = numpy.dot(orbo, nto_o)
    virtual_nto = numpy.dot(orbv, nto_v)
    nto_coeff = numpy.hstack((occupied_nto, virtual_nto))

    if mol.symmetry:
        nto_coeff = lib.tag_array(nto_coeff, orbsym=nto_orbsym)

    log = logger.new_logger(tdobj, verbose)
    if log.verbose >= logger.INFO:
        log.info('State %d: %g eV  NTO largest component %s', state_id + 1,
                 tdobj.e[state_id] * nist.HARTREE2EV, weights[0])
        o_idx = numpy.where(abs(nto_o[:, 0]) > threshold)[0]
        v_idx = numpy.where(abs(nto_v[:, 0]) > threshold)[0]
        fmt = '%' + str(lib.param.OUTPUT_DIGITS) + 'f (MO #%d)'
        log.info('    occ-NTO: ' + ' + '.join([(fmt %
                                                (nto_o[i, 0], i + MO_BASE))
                                               for i in o_idx]))
        log.info('    vir-NTO: ' +
                 ' + '.join([(fmt % (nto_v[i, 0], i + MO_BASE + nocc))
                             for i in v_idx]))
    return weights, nto_coeff
示例#44
0
文件: krks.py 项目: yoshida-lab/pyscf
def get_veff(ks, cell=None, dm=None, dm_last=0, vhf_last=0, hermi=1,
             kpts=None, kpts_band=None):
    '''Coulomb + XC functional

    .. note::
        This is a replica of pyscf.dft.rks.get_veff with kpts added.
        This function will change the ks object.

    Args:
        ks : an instance of :class:`RKS`
            XC functional are controlled by ks.xc attribute.  Attribute
            ks.grids might be initialized.
        dm : ndarray or list of ndarrays
            A density matrix or a list of density matrices

    Returns:
        Veff : (nkpts, nao, nao) or (*, nkpts, nao, nao) ndarray
        Veff = J + Vxc.
    '''
    if cell is None: cell = ks.cell
    if dm is None: dm = ks.make_rdm1()
    if kpts is None: kpts = ks.kpts
    t0 = (time.clock(), time.time())

    omega, alpha, hyb = ks._numint.rsh_and_hybrid_coeff(ks.xc, spin=cell.spin)
    hybrid = abs(hyb) > 1e-10

    if not hybrid and isinstance(ks.with_df, multigrid.MultiGridFFTDF):
        n, exc, vxc = multigrid.nr_rks(ks.with_df, ks.xc, dm, hermi,
                                       kpts, kpts_band,
                                       with_j=True, return_j=False)
        logger.debug(ks, 'nelec by numeric integration = %s', n)
        t0 = logger.timer(ks, 'vxc', *t0)
        return vxc

    # ndim = 3 : dm.shape = (nkpts, nao, nao)
    ground_state = (isinstance(dm, np.ndarray) and dm.ndim == 3 and
                    kpts_band is None)

# For UniformGrids, grids.coords does not indicate whehter grids are initialized
    if ks.grids.non0tab is None:
        ks.grids.build(with_non0tab=True)
        if (isinstance(ks.grids, gen_grid.BeckeGrids) and
            ks.small_rho_cutoff > 1e-20 and ground_state):
            ks.grids = rks.prune_small_rho_grids_(ks, cell, dm, ks.grids, kpts)
        t0 = logger.timer(ks, 'setting up grids', *t0)

    if hermi == 2:  # because rho = 0
        n, exc, vxc = 0, 0, 0
    else:
        n, exc, vxc = ks._numint.nr_rks(cell, ks.grids, ks.xc, dm, 0,
                                        kpts, kpts_band)
        logger.debug(ks, 'nelec by numeric integration = %s', n)
        t0 = logger.timer(ks, 'vxc', *t0)

    weight = 1./len(kpts)
    if not hybrid:
        vj = ks.get_j(cell, dm, hermi, kpts, kpts_band)
        vxc += vj
    else:
        if getattr(ks.with_df, '_j_only', False):  # for GDF and MDF
            ks.with_df._j_only = False
        vj, vk = ks.get_jk(cell, dm, hermi, kpts, kpts_band)
        vxc += vj - vk * (hyb * .5)

        if ground_state:
            exc -= np.einsum('Kij,Kji', dm, vk).real * .5 * hyb*.5 * weight

    if ground_state:
        ecoul = np.einsum('Kij,Kji', dm, vj).real * .5 * weight
    else:
        ecoul = None

    vxc = lib.tag_array(vxc, ecoul=ecoul, exc=exc, vj=None, vk=None)
    return vxc
示例#45
0
 def rotate_mo(self, mo_coeff, u, log=None):
     mo = numpy.dot(mo_coeff, u)
     if self._scf.mol.symmetry:
         orbsym = hf_symm.get_orbsym(self._scf.mol, mo_coeff)
         mo = lib.tag_array(mo, orbsym=orbsym)
     return mo
示例#46
0
def get_veff(mf, mol=None, dm=None, dm_last=0, vhf_last=0, hermi=1):
    t0 = (time.clock(), time.time())
    mf.unpack_(comm.bcast(mf.pack()))
    mol = mf.mol
    ni = mf._numint

    if mf.nlc != '':
        raise NotImplementedError
    omega, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, spin=mol.spin)
    if abs(omega) > 1e-10:  # For range separated Coulomb operator
        raise NotImplementedError

    # Broadcast the large input arrays here.
    if any(comm.allgather(isinstance(dm, str) and dm == 'SKIPPED_ARG')):
        if rank == 0 and dm is None:
            dm = mf.make_rdm1()
        dm = mpi.bcast_tagged_array(dm)

    if any(comm.allgather(isinstance(dm_last, str) and dm_last == 'SKIPPED_ARG')):
        dm_last = mpi.bcast_tagged_array(dm_last)

    if any(comm.allgather(isinstance(vhf_last, str) and vhf_last == 'SKIPPED_ARG')):
        vhf_last = mpi.bcast_tagged_array(vhf_last)

    ground_state = (dm.ndim == 3 and dm.shape[0] == 2)

    if mf.grids.coords is None:
        mpi_rks._setup_grids_(mf, dm[0]+dm[1])
        t0 = logger.timer(mf, 'setting up grids', *t0)

    if hermi == 2:  # because rho = 0
        n, exc, vxc = 0, 0, 0
    else:
        n, exc, vxc = ni.nr_uks(mol, mf.grids, mf.xc, dm)
        n = comm.allreduce(n)
        exc = comm.allreduce(exc)
        vxc = mpi.reduce(vxc)
        logger.debug(mf, 'nelec by numeric integration = %s', n)
        t0 = logger.timer(mf, 'vxc', *t0)

    if abs(hyb) < 1e-10 and abs(alpha) < 1e-10:
        vk = None
        if getattr(vhf_last, 'vj', None) is not None:
            ddm = numpy.asarray(dm) - dm_last
            ddm = ddm[0] + ddm[1]
            vj = mpi.reduce(mf.get_j(mol, ddm, hermi))
            vj += vhf_last.vj
        else:
            vj = mf.get_j(mol, dm[0]+dm[1], hermi)
            vj = mpi.reduce(vj)
        vxc += vj
    else:
        if getattr(vhf_last, 'vk', None) is not None:
            ddm = numpy.asarray(dm) - dm_last
            vj, vk = mf.get_jk(mol, ddm, hermi)
            ddm = None
            vj = mpi.reduce(vj[0] + vj[1])
            vk = mpi.reduce(vk) * hyb
            vj += vhf_last.vj
            vk += vhf_last.vk
        else:
            vj, vk = mf.get_jk(mol, dm, hermi)
            vj = mpi.reduce(vj[0] + vj[1])
            vk = mpi.reduce(vk) * hyb
        vxc += vj
        vxc -= vk

        if ground_state:
            exc -=(numpy.einsum('ij,ji', dm[0], vk[0]) +
                   numpy.einsum('ij,ji', dm[1], vk[1])) * .5

    if ground_state:
        ecoul = numpy.einsum('ij,ji', dm[0]+dm[1], vj) * .5
    else:
        ecoul = None

    vxc = lib.tag_array(vxc, ecoul=ecoul, exc=exc, vj=vj, vk=vk)
    return vxc
示例#47
0
def kernel(ot,
           oneCDMs_amo,
           twoCDM_amo,
           mo_coeff,
           ncore,
           ncas,
           max_memory=2000,
           hermi=1,
           paaa_only=False,
           aaaa_only=False):
    ''' Get the 1- and 2-body effective potential from MC-PDFT.

        Args:
            ot : an instance of otfnal class
            oneCDMs_amo : ndarray of shape (2, ncas, ncas)
                containing spin-separated one-body density matrices
            twoCDM_amo : ndarray of shape (ncas, ncas, ncas, ncas)
                containing spin-summed two-body cumulant density matrix in an
                active space
            mo_coeff : ndarray of shape (nao, nmo)
                containing molecular orbital coefficients
            ncore : integer
                number of inactive orbitals
            ncas : integer
                number of active orbitals

        Kwargs:
            max_memory : int or float
                maximum cache size in MB
                default is 2000
            hermi : int
                1 if 1CDMs are assumed hermitian, 0 otherwise
            paaa_only : logical
                If true, only compute the paaa range of papa and ppaa (all
                other elements set to zero)
            aaaa_only : logical
                If true, only compute the aaaa range of papa and ppaa (all
                other elements set to zero; overrides paaa_only)

        Returns:
            veff1 : ndarray of shape (nao, nao)
                1-body effective potential
            veff2 : object of class pdft_veff._ERIS
                2-body effective potential and related quantities

    '''
    nocc = ncore + ncas
    ni, xctype, dens_deriv = ot._numint, ot.xctype, ot.dens_deriv
    nao = mo_coeff.shape[0]
    mo_core = mo_coeff[:, :ncore]
    ao2amo = mo_coeff[:, ncore:nocc]
    npair = nao * (nao + 1) // 2
    shls_slice = (0, ot.mol.nbas)
    ao_loc = ot.mol.ao_loc_nr()

    veff1 = np.zeros((nao, nao), dtype=oneCDMs_amo.dtype)
    veff2 = _ERIS(ot.mol,
                  mo_coeff,
                  ncore,
                  ncas,
                  paaa_only=paaa_only,
                  aaaa_only=aaaa_only,
                  verbose=ot.verbose,
                  stdout=ot.stdout)

    t0 = (time.process_time(), time.time())

    # Make density matrices and TAG THEM with their own eigendecompositions
    # because that speeds up the rho generators!
    dm_core = mo_core @ mo_core.T
    dm_cas = np.dot(ao2amo, np.dot(oneCDMs_amo, ao2amo.T)).transpose(1, 0, 2)
    dm1s = dm_cas + dm_core[None, :, :]
    dm_core *= 2
    # tag dm_core
    imo_occ = np.ones(ncore, dtype=dm_core.dtype) * 2.0
    dm_core = tag_array(dm_core, mo_coeff=mo_core, mo_occ=imo_occ)
    # tag dm_cas
    amo_occ = np.zeros((2, ncas), dtype=dm_cas.dtype)
    amo_coeff = np.stack([ao2amo.copy(), ao2amo.copy()], axis=0)
    for i in range(2):
        amo_occ[i], ua = linalg.eigh(oneCDMs_amo[i])
        amo_coeff[i] = amo_coeff[i] @ ua
    dm_cas = tag_array(dm_cas, mo_coeff=amo_coeff, mo_occ=amo_occ)
    # tag dm1s
    mo_occ = np.zeros((2, nocc), dtype=dm1s.dtype)
    mo_occ[:, :ncore] = 1.0
    mo_occ[:, ncore:nocc] = amo_occ
    tag_coeff = np.stack(
        (mo_coeff[:, :nocc].copy(), mo_coeff[:, :nocc].copy()), axis=0)
    tag_coeff[:, :, ncore:nocc] = amo_coeff
    dm1s = tag_array(dm1s, mo_coeff=tag_coeff, mo_occ=mo_occ)

    # rho generators
    make_rho_c, nset_c, nao_c = ni._gen_rho_evaluator(ot.mol, dm_core, hermi)
    make_rho_a, nset_a, nao_a = ni._gen_rho_evaluator(ot.mol, dm_cas, hermi)
    make_rho, nset, nao_ = ni._gen_rho_evaluator(ot.mol, dm1s, hermi)

    # memory block size
    gc.collect()
    remaining_floats = (max_memory - current_memory()[0]) * 1e6 / 8
    nderiv_rho = (1, 4, 10)[dens_deriv]  # ?? for meta-GGA
    nderiv_Pi = (1, 4)[ot.Pi_deriv]
    ncols = 4 + nderiv_rho * nao  # ao, weight, coords
    ncols += nderiv_rho * 4 + nderiv_Pi  # rho, rho_a, rho_c, Pi
    ncols += 1 + nderiv_rho + nderiv_Pi  # eot, vot
    # Asynchronous part
    nveff1 = nderiv_rho * (nao + 1)  # footprint of get_veff_1body
    nveff2 = veff2._accumulate_ftpt() * nderiv_Pi
    ncols += np.amax([nveff1, nveff2])  # asynchronous fns
    pdft_blksize = int(remaining_floats /
                       (ncols * BLKSIZE)) * BLKSIZE  # round up
    if ot.grids.coords is None:
        ot.grids.build(with_non0tab=True)
    ngrids = ot.grids.coords.shape[0]
    pdft_blksize = max(BLKSIZE, min(pdft_blksize, ngrids, BLKSIZE * 1200))
    logger.debug(
        ot,
        '{} MB used of {} available; block size of {} chosen for grid with {} points'
        .format(current_memory()[0], max_memory, pdft_blksize, ngrids))

    # The actual loop
    for ao, mask, weight, coords in ni.block_loop(ot.mol,
                                                  ot.grids,
                                                  nao,
                                                  dens_deriv,
                                                  max_memory,
                                                  blksize=pdft_blksize):
        rho = np.asarray([make_rho(i, ao, mask, xctype) for i in range(2)])
        rho_a = sum([make_rho_a(i, ao, mask, xctype) for i in range(2)])
        rho_c = make_rho_c(0, ao, mask, xctype)
        t0 = logger.timer(ot, 'untransformed densities (core and total)', *t0)
        Pi = get_ontop_pair_density(ot, rho, ao, dm1s, twoCDM_amo, ao2amo,
                                    dens_deriv, mask)
        t0 = logger.timer(ot, 'on-top pair density calculation', *t0)
        eot, vot = ot.eval_ot(rho, Pi, weights=weight)[:2]
        vrho, vPi = vot
        t0 = logger.timer(ot, 'effective potential kernel calculation', *t0)
        if ao.ndim == 2:
            ao = ao[None, :, :]  # TODO: consistent format req's ao LDA case
        veff1 += ot.get_veff_1body(rho,
                                   Pi,
                                   ao,
                                   weight,
                                   non0tab=mask,
                                   shls_slice=shls_slice,
                                   ao_loc=ao_loc,
                                   hermi=1,
                                   kern=vrho)
        t0 = logger.timer(ot, '1-body effective potential calculation', *t0)
        veff2._accumulate(ot, rho, Pi, ao, weight, rho_c, rho_a, vPi, mask,
                          shls_slice, ao_loc)
        t0 = logger.timer(ot, '2-body effective potential calculation', *t0)
    veff2._finalize()
    t0 = logger.timer(ot, 'Finalizing 2-body effective potential calculation',
                      *t0)
    return veff1, veff2
示例#48
0
def get_veff(ks, cell=None, dm=None, dm_last=0, vhf_last=0, hermi=1,
             kpt=None, kpts_band=None):
    '''Coulomb + XC functional

    .. note::
        This function will change the ks object.

    Args:
        ks : an instance of :class:`RKS`
            XC functional are controlled by ks.xc attribute.  Attribute
            ks.grids might be initialized.
        dm : ndarray or list of ndarrays
            A density matrix or a list of density matrices

    Returns:
        matrix Veff = J + Vxc.  Veff can be a list matrices, if the input
        dm is a list of density matrices.
    '''
    if cell is None: cell = ks.cell
    if dm is None: dm = ks.make_rdm1()
    if kpt is None: kpt = ks.kpt
    t0 = (time.clock(), time.time())

    omega, alpha, hyb = ks._numint.rsh_and_hybrid_coeff(ks.xc, spin=cell.spin)
    hybrid = abs(hyb) > 1e-10

    if not hybrid and isinstance(ks.with_df, multigrid.MultiGridFFTDF):
        n, exc, vxc = multigrid.nr_rks(ks.with_df, ks.xc, dm, hermi,
                                       kpt.reshape(1,3), kpts_band,
                                       with_j=True, return_j=False)
        logger.debug(ks, 'nelec by numeric integration = %s', n)
        t0 = logger.timer(ks, 'vxc', *t0)
        return vxc

    ground_state = (isinstance(dm, numpy.ndarray) and dm.ndim == 2
                    and kpts_band is None)

# Use grids.non0tab to detect whether grids are initialized.  For
# UniformGrids, grids.coords as a property cannot indicate whehter grids are
# initialized.
    if ks.grids.non0tab is None:
        ks.grids.build(with_non0tab=True)
        if (isinstance(ks.grids, gen_grid.BeckeGrids) and
            ks.small_rho_cutoff > 1e-20 and ground_state):
            ks.grids = prune_small_rho_grids_(ks, cell, dm, ks.grids, kpt)
        t0 = logger.timer(ks, 'setting up grids', *t0)

    if hermi == 2:  # because rho = 0
        n, exc, vxc = 0, 0, 0
    else:
        n, exc, vxc = ks._numint.nr_rks(cell, ks.grids, ks.xc, dm, 0,
                                        kpt, kpts_band)
        logger.debug(ks, 'nelec by numeric integration = %s', n)
        t0 = logger.timer(ks, 'vxc', *t0)

    if not hybrid:
        vj = ks.get_j(cell, dm, hermi, kpt, kpts_band)
        vxc += vj
    else:
        if getattr(ks.with_df, '_j_only', False):  # for GDF and MDF
            ks.with_df._j_only = False
        vj, vk = ks.get_jk(cell, dm, hermi, kpt, kpts_band)
        vxc += vj - vk * (hyb * .5)

        if ground_state:
            exc -= numpy.einsum('ij,ji', dm, vk).real * .5 * hyb*.5

    if ground_state:
        ecoul = numpy.einsum('ij,ji', dm, vj).real * .5
    else:
        ecoul = None

    vxc = lib.tag_array(vxc, ecoul=ecoul, exc=exc, vj=None, vk=None)
    return vxc
示例#49
0
def get_veff(ks, mol=None, dm=None, dm_last=0, vhf_last=0, hermi=1):
    '''Coulomb + XC functional

    .. note::
        This function will change the ks object.

    Args:
        ks : an instance of :class:`RKS`
            XC functional are controlled by ks.xc attribute.  Attribute
            ks.grids might be initialized.
        dm : ndarray or list of ndarrays
            A density matrix or a list of density matrices

    Kwargs:
        dm_last : ndarray or a list of ndarrays or 0
            The density matrix baseline.  If not 0, this function computes the
            increment of HF potential w.r.t. the reference HF potential matrix.
        vhf_last : ndarray or a list of ndarrays or 0
            The reference Vxc potential matrix.
        hermi : int
            Whether J, K matrix is hermitian

            | 0 : no hermitian or symmetric
            | 1 : hermitian
            | 2 : anti-hermitian

    Returns:
        matrix Veff = J + Vxc.  Veff can be a list matrices, if the input
        dm is a list of density matrices.
    '''
    if mol is None: mol = ks.mol
    if dm is None: dm = ks.make_rdm1()
    ks.initialize_grids(mol, dm)

    t0 = (logger.process_clock(), logger.perf_counter())

    ground_state = isinstance(dm, numpy.ndarray) and dm.ndim == 2

    if hermi == 2:  # because rho = 0
        n, exc, vxc = 0, 0, 0
    else:
        max_memory = ks.max_memory - lib.current_memory()[0]
        ni = ks._numint
        n, exc, vxc = ni.get_vxc(mol,
                                 ks.grids,
                                 ks.xc,
                                 dm,
                                 hermi=hermi,
                                 max_memory=max_memory)
        if ks.nlc != '':
            assert ('VV10' in ks.nlc.upper())
            _, enlc, vnlc = ni.get_vxc(mol,
                                       ks.nlcgrids,
                                       ks.xc + '__' + ks.nlc,
                                       dm,
                                       hermi=hermi,
                                       max_memory=max_memory)
            exc += enlc
            vxc += vnlc
        logger.debug(ks, 'nelec by numeric integration = %s', n)
        t0 = logger.timer(ks, 'vxc', *t0)

    #enabling range-separated hybrids
    omega, alpha, hyb = ni.rsh_and_hybrid_coeff(ks.xc, spin=mol.spin)

    if abs(hyb) < 1e-10 and abs(alpha) < 1e-10:
        vk = None
        if (ks._eri is None and ks.direct_scf
                and getattr(vhf_last, 'vj', None) is not None):
            ddm = numpy.asarray(dm) - numpy.asarray(dm_last)
            vj = ks.get_j(mol, ddm, hermi)
            vj += vhf_last.vj
        else:
            vj = ks.get_j(mol, dm, hermi)
        vxc += vj
    else:
        if (ks._eri is None and ks.direct_scf
                and getattr(vhf_last, 'vk', None) is not None):
            ddm = numpy.asarray(dm) - numpy.asarray(dm_last)
            vj, vk = ks.get_jk(mol, ddm, hermi)
            vk *= hyb
            if abs(omega) > 1e-10:
                vklr = ks.get_k(mol, ddm, hermi, omega=omega)
                vklr *= (alpha - hyb)
                vk += vklr
            vj += vhf_last.vj
            vk += vhf_last.vk
        else:
            vj, vk = ks.get_jk(mol, dm, hermi)
            vk *= hyb
            if abs(omega) > 1e-10:
                vklr = ks.get_k(mol, dm, hermi, omega=omega)
                vklr *= (alpha - hyb)
                vk += vklr
        vxc += vj - vk

        if ground_state:
            exc -= numpy.einsum('ij,ji', dm, vk).real * .5
    if ground_state:
        ecoul = numpy.einsum('ij,ji', dm, vj).real * .5
    else:
        ecoul = None

    vxc = lib.tag_array(vxc, ecoul=ecoul, exc=exc, vj=vj, vk=vk)
    return vxc
示例#50
0
def cas_natorb(mc, mo_coeff=None, ci=None, eris=None, sort=False,
               casdm1=None, verbose=None):
    '''Transform active orbitals to natrual orbitals, and update the CI wfn

    Args:
        mc : a CASSCF/CASCI object or RHF object

    Kwargs:
        sort : bool
            Sort natural orbitals wrt the occupancy.

    Returns:
        A tuple, the first item is natural orbitals, the second is updated CI
        coefficients, the third is the natural occupancy associated to the
        natural orbitals.
    '''
    from pyscf.lo import orth
    from pyscf.tools import dump_mat
    from pyscf.tools.mo_mapping import mo_1to1map
    if isinstance(verbose, logger.Logger):
        log = verbose
    else:
        log = logger.Logger(mc.stdout, mc.verbose)
    if mo_coeff is None: mo_coeff = mc.mo_coeff
    if ci is None: ci = mc.ci
    ncore = mc.ncore
    ncas = mc.ncas
    nocc = ncore + ncas
    nelecas = mc.nelecas
    if casdm1 is None:
        casdm1 = mc.fcisolver.make_rdm1(ci, ncas, nelecas)
    # orbital symmetry is reserved in this _eig call
    occ, ucas = mc._eig(-casdm1, ncore, nocc)
    if sort:
        casorb_idx = numpy.argsort(occ.round(9), kind='mergesort')
        occ = occ[casorb_idx]
        ucas = ucas[:,casorb_idx]
# restore phase
# where_natorb gives the location of the natural orbital for the input cas
# orbitals.  gen_strings4orblist map thes sorted strings (on CAS orbital) to
# the unsorted determinant strings (on natural orbital). e.g.  (3o,2e) system
#       CAS orbital      1  2  3
#       natural orbital  3  1  2        <= by mo_1to1map
#       CASorb-strings   0b011, 0b101, 0b110
#                    ==  (1,2), (1,3), (2,3)
#       natorb-strings   (3,1), (3,2), (1,2)
#                    ==  0B101, 0B110, 0B011    <= by gen_strings4orblist
# then argsort to translate the string representation to the address
#       [2(=0B011), 0(=0B101), 1(=0B110)]
# to indicate which CASorb-strings address to be loaded in each natorb-strings slot
    where_natorb = mo_1to1map(ucas)
    for i, k in enumerate(where_natorb):
        if ucas[i,k] < 0:
            ucas[:,k] *= -1

    occ = -occ
    mo_occ = numpy.zeros(mo_coeff.shape[1])
    mo_occ[:ncore] = 2
    mo_occ[ncore:nocc] = occ

    mo_coeff1 = mo_coeff.copy()
    mo_coeff1[:,ncore:nocc] = numpy.dot(mo_coeff[:,ncore:nocc], ucas)
    if hasattr(mo_coeff, 'orbsym'):
        orbsym = numpy.copy(mo_coeff.orbsym)
        if sort:
            orbsym[ncore:nocc] = orbsym[ncore:nocc][casorb_idx]
        mo_coeff1 = lib.tag_array(mo_coeff1, orbsym=orbsym)

    if isinstance(ci, numpy.ndarray):
        fcivec = fci.addons.transform_ci_for_orbital_rotation(ci, ncas, nelecas, ucas)
    elif isinstance(ci, (tuple, list)) and isinstance(ci[0], numpy.ndarray):
        # for state-average eigenfunctions
        fcivec = [fci.addons.transform_ci_for_orbital_rotation(x, ncas, nelecas, ucas)
                  for x in ci]
    else:
        log.info('FCI vector not available, call CASCI for wavefunction')
        mocas = mo_coeff1[:,ncore:nocc]
        hcore = mc.get_hcore()
        dm_core = numpy.dot(mo_coeff1[:,:ncore]*2, mo_coeff1[:,:ncore].T)
        ecore = mc._scf.energy_nuc()
        ecore+= numpy.einsum('ij,ji', hcore, dm_core)
        h1eff = reduce(numpy.dot, (mocas.T, hcore, mocas))
        if eris is not None and hasattr(eris, 'ppaa'):
            ecore += eris.vhf_c[:ncore,:ncore].trace()
            h1eff += reduce(numpy.dot, (ucas.T, eris.vhf_c[ncore:nocc,ncore:nocc], ucas))
            aaaa = ao2mo.restore(4, eris.ppaa[ncore:nocc,ncore:nocc,:,:], ncas)
            aaaa = ao2mo.incore.full(aaaa, ucas)
        else:
            corevhf = mc.get_veff(mc.mol, dm_core)
            ecore += numpy.einsum('ij,ji', dm_core, corevhf) * .5
            h1eff += reduce(numpy.dot, (mocas.T, corevhf, mocas))
            aaaa = ao2mo.kernel(mc.mol, mocas)

        # See label_symmetry_ function in casci_symm.py which initialize the
        # orbital symmetry information in fcisolver.  This orbital symmetry
        # labels should be reordered to match the sorted active space orbitals.
        if hasattr(mo_coeff1, 'orbsym') and sort:
            mc.fcisolver.orbsym = mo_coeff1.orbsym[ncore:nocc]

        max_memory = max(400, mc.max_memory-lib.current_memory()[0])
        e, fcivec = mc.fcisolver.kernel(h1eff, aaaa, ncas, nelecas, ecore=ecore,
                                        max_memory=max_memory, verbose=log)
        log.debug('In Natural orbital, CASCI energy = %.12g', e)

    if log.verbose >= logger.INFO:
        ovlp_ao = mc._scf.get_ovlp()
        log.debug('where_natorb %s', str(where_natorb))
        log.info('Natural occ %s', str(occ))
        log.info('Natural orbital (expansion on meta-Lowdin AOs) in CAS space')
        label = mc.mol.ao_labels()
        orth_coeff = orth.orth_ao(mc.mol, 'meta_lowdin', s=ovlp_ao)
        mo_cas = reduce(numpy.dot, (orth_coeff.T, ovlp_ao, mo_coeff1[:,ncore:nocc]))
        dump_mat.dump_rec(log.stdout, mo_cas, label, start=1)

        if mc._scf.mo_coeff is not None:
            s = reduce(numpy.dot, (mo_coeff1[:,ncore:nocc].T,
                                   mc._scf.get_ovlp(), mc._scf.mo_coeff))
            idx = numpy.argwhere(abs(s)>.4)
            for i,j in idx:
                log.info('<CAS-nat-orb|mo-hf>  %d  %d  %12.8f',
                         ncore+i+1, j+1, s[i,j])
    return mo_coeff1, fcivec, mo_occ
示例#51
0
def sort_mo(casscf, mo_coeff, caslst, base=BASE):
    '''Pick orbitals for CAS space

    Args:
        casscf : an :class:`CASSCF` or :class:`CASCI` object

        mo_coeff : ndarray or a list of ndarray
            Orbitals for CASSCF initial guess.  In the UHF-CASSCF, it's a list
            of two orbitals, for alpha and beta spin.
        caslst : list of int or nested list of int
            A list of orbital indices to represent the CAS space.  In the UHF-CASSCF,
            it's consist of two lists, for alpha and beta spin.

    Kwargs:
        base : int
            0-based (C-style) or 1-based (Fortran-style) caslst

    Returns:
        An reoreded mo_coeff, which put the orbitals given by caslst in the CAS space

    Examples:

    >>> from pyscf import gto, scf, mcscf
    >>> mol = gto.M(atom='N 0 0 0; N 0 0 1', basis='ccpvdz', verbose=0)
    >>> mf = scf.RHF(mol)
    >>> mf.scf()
    >>> mc = mcscf.CASSCF(mf, 4, 4)
    >>> cas_list = [5,6,8,9] # pi orbitals
    >>> mo = mc.sort_mo(cas_list)
    >>> mc.kernel(mo)[0]
    -109.007378939813691
    '''
    ncore = casscf.ncore

    def ext_list(nmo, caslst):
        mask = numpy.ones(nmo, dtype=bool)
        mask[caslst] = False
        idx = numpy.where(mask)[0]
        if len(idx) + casscf.ncas != nmo:
            raise ValueError('Active space size is incompatible with caslist. '
                             'ncas = %d.  caslist %s' % (casscf.ncas, caslst))
        return idx

    if isinstance(ncore, (int, numpy.integer)):
        nmo = mo_coeff.shape[1]
        if base != 0:
            caslst = [i - base for i in caslst]
        idx = ext_list(nmo, caslst)
        mo = numpy.hstack((mo_coeff[:, idx[:ncore]], mo_coeff[:, caslst],
                           mo_coeff[:, idx[ncore:]]))

        if getattr(mo_coeff, 'orbsym', None) is not None:
            orbsym = mo_coeff.orbsym
            orbsym = numpy.hstack(
                (orbsym[idx[:ncore]], orbsym[caslst], orbsym[idx[ncore:]]))
            mo = lib.tag_array(mo, orbsym=orbsym)
        return mo

    else:  # UHF-based CASSCF
        if isinstance(caslst[0], (int, numpy.integer)):
            if base != 0:
                caslsta = [i - 1 for i in caslst]
                caslst = (caslsta, caslsta)
        else:  # two casspace lists, for alpha and beta
            if base != 0:
                caslst = ([i - base
                           for i in caslst[0]], [i - base for i in caslst[1]])
        nmo = mo_coeff[0].shape[1]
        idxa = ext_list(nmo, caslst[0])
        mo_a = numpy.hstack(
            (mo_coeff[0][:, idxa[:ncore[0]]], mo_coeff[0][:, caslst[0]],
             mo_coeff[0][:, idxa[ncore[0]:]]))
        idxb = ext_list(nmo, caslst[1])
        mo_b = numpy.hstack(
            (mo_coeff[1][:, idxb[:ncore[1]]], mo_coeff[1][:, caslst[1]],
             mo_coeff[1][:, idxb[ncore[1]:]]))

        if getattr(mo_coeff[0], 'orbsym', None) is not None:
            orbsyma, orbsymb = mo_coeff[0].orbsym, mo_coeff[1].orbsym
            orbsyma = numpy.hstack(
                (orbsyma[idxa[:ncore[0]]], orbsyma[caslst[0]],
                 orbsyma[idxa[ncore[0]:]]))
            orbsymb = numpy.hstack(
                (orbsymb[idxb[:ncore[1]]], orbsymb[caslst[1]],
                 orbsymb[idxb[ncore[1]:]]))
            mo_a = lib.tag_array(mo_a, orbsym=orbsyma)
            mo_b = lib.tag_array(mo_b, orbsym=orbsymb)
        return (mo_a, mo_b)
示例#52
0
文件: kccsd.py 项目: zwang123/pyscf
def _make_eris_incore(cc, mo_coeff=None):
    log = logger.Logger(cc.stdout, cc.verbose)
    cput0 = (time.clock(), time.time())
    eris = gccsd._PhysicistsERIs()
    kpts = cc.kpts
    nkpts = cc.nkpts
    nocc = cc.nocc
    nmo = cc.nmo
    nvir = nmo - nocc
    eris.nocc = nocc

    #if any(nocc != numpy.count_nonzero(cc._scf.mo_occ[k] > 0) for k in range(nkpts)):
    #    raise NotImplementedError('Different occupancies found for different k-points')

    if mo_coeff is None:
        mo_coeff = cc.mo_coeff
    #else:
    #    # If mo_coeff is not canonical orbital
    #    # TODO does this work for k-points? changed to conjugate.
    #    raise NotImplementedError
    nao = mo_coeff[0].shape[0]
    dtype = mo_coeff[0].dtype

    moidx = get_frozen_mask(cc)
    nocc_per_kpt = numpy.asarray(get_nocc(cc, per_kpoint=True))
    nmo_per_kpt = numpy.asarray(get_nmo(cc, per_kpoint=True))

    padded_moidx = []
    for k in range(nkpts):
        kpt_nocc = nocc_per_kpt[k]
        kpt_nvir = nmo_per_kpt[k] - kpt_nocc
        kpt_padded_moidx = numpy.concatenate(
            (numpy.ones(kpt_nocc, dtype=numpy.bool),
             numpy.zeros(nmo - kpt_nocc - kpt_nvir, dtype=numpy.bool),
             numpy.ones(kpt_nvir, dtype=numpy.bool)))
        padded_moidx.append(kpt_padded_moidx)

    eris.mo_coeff = []
    eris.orbspin = []
    # Generate the molecular orbital coefficients with the frozen orbitals masked.
    # Each MO is tagged with orbspin, a list of 0's and 1's that give the overall
    # spin of each MO.
    #
    # Here we will work with two index arrays; one is for our original (small) moidx
    # array while the next is for our new (large) padded array.
    for k in range(nkpts):
        kpt_moidx = moidx[k]
        kpt_padded_moidx = padded_moidx[k]

        mo = numpy.zeros((nao, nmo), dtype=dtype)
        mo[:, kpt_padded_moidx] = mo_coeff[k][:, kpt_moidx]
        if hasattr(mo_coeff[k], 'orbspin'):
            orbspin_dtype = mo_coeff[k].orbspin[kpt_moidx].dtype
            orbspin = numpy.zeros(nmo, dtype=orbspin_dtype)
            orbspin[kpt_padded_moidx] = mo_coeff[k].orbspin[kpt_moidx]
            mo = lib.tag_array(mo, orbspin=orbspin)
            eris.orbspin.append(orbspin)
        # FIXME: What if the user freezes all up spin orbitals in
        # an RHF calculation?  The number of electrons will still be
        # even.
        else:  # guess orbital spin - assumes an RHF calculation
            assert (numpy.count_nonzero(kpt_moidx) % 2 == 0)
            orbspin = numpy.zeros(mo.shape[1], dtype=int)
            orbspin[1::2] = 1
            mo = lib.tag_array(mo, orbspin=orbspin)
            eris.orbspin.append(orbspin)
        eris.mo_coeff.append(mo)

    # Re-make our fock MO matrix elements from density and fock AO
    dm = cc._scf.make_rdm1(cc.mo_coeff, cc.mo_occ)
    fockao = cc._scf.get_hcore() + cc._scf.get_veff(cc._scf.cell, dm)
    eris.fock = numpy.asarray([
        reduce(numpy.dot, (mo.T.conj(), fockao[k], mo))
        for k, mo in enumerate(eris.mo_coeff)
    ])

    kconserv = kpts_helper.get_kconserv(cc._scf.cell, cc.kpts)
    # The bottom nao//2 coefficients are down (up) spin while the top are up (down).
    # These are 'spin-less' quantities; spin-conservation will be added manually.
    so_coeff = [mo[:nao // 2] + mo[nao // 2:] for mo in eris.mo_coeff]

    eri = numpy.empty((nkpts, nkpts, nkpts, nmo, nmo, nmo, nmo),
                      dtype=numpy.complex128)
    fao2mo = cc._scf.with_df.ao2mo
    for kp, kq, kr in kpts_helper.loop_kkk(nkpts):
        ks = kconserv[kp, kq, kr]
        eri_kpt = fao2mo(
            (so_coeff[kp], so_coeff[kq], so_coeff[kr], so_coeff[ks]),
            (kpts[kp], kpts[kq], kpts[kr], kpts[ks]),
            compact=False)
        eri_kpt[(eris.orbspin[kp][:, None] != eris.orbspin[kq]).ravel()] = 0
        eri_kpt[:, (eris.orbspin[kr][:, None] != eris.orbspin[ks]).ravel()] = 0
        eri_kpt = eri_kpt.reshape(nmo, nmo, nmo, nmo)
        eri[kp, kq, kr] = eri_kpt

    # Check some antisymmetrized properties of the integrals
    if DEBUG:
        check_antisymm_3412(cc, cc.kpts, eri)

    # Antisymmetrizing (pq|rs)-(ps|rq), where the latter integral is equal to
    # (rq|ps); done since we aren't tracking the kpoint of orbital 's'
    eri = eri - eri.transpose(2, 1, 0, 5, 4, 3, 6)
    # Chemist -> physics notation
    eri = eri.transpose(0, 2, 1, 3, 5, 4, 6)

    # Set the various integrals
    eris.dtype = eri.dtype
    eris.oooo = eri[:, :, :, :nocc, :nocc, :nocc, :nocc].copy() / nkpts
    eris.ooov = eri[:, :, :, :nocc, :nocc, :nocc, nocc:].copy() / nkpts
    eris.ovoo = eri[:, :, :, :nocc, nocc:, :nocc, :nocc].copy() / nkpts
    eris.oovv = eri[:, :, :, :nocc, :nocc, nocc:, nocc:].copy() / nkpts
    eris.ovov = eri[:, :, :, :nocc, nocc:, :nocc, nocc:].copy() / nkpts
    eris.ovvv = eri[:, :, :, :nocc, nocc:, nocc:, nocc:].copy() / nkpts
    eris.vvvv = eri[:, :, :, nocc:, nocc:, nocc:, nocc:].copy() / nkpts

    log.timer('CCSD integral transformation', *cput0)
    return eris
示例#53
0
def canonicalize(mc, mo_coeff=None, ci=None, eris=None, sort=False,
                 cas_natorb=False, casdm1=None, verbose=logger.NOTE):
    '''Canonicalized CASCI/CASSCF orbitals of effecitve Fock matrix.
    Effective Fock matrix is built with one-particle density matrix (see
    also :func:`mcscf.casci.get_fock`)

    Args:
        mc : a CASSCF/CASCI object or RHF object

    Returns:
        A tuple, (natural orbitals, CI coefficients, orbital energies)
        The orbital energies are the diagonal terms of general Fock matrix.
    '''
    from pyscf.lo import orth
    from pyscf.tools import dump_mat
    log = logger.new_logger(mc, verbose)

    if mo_coeff is None: mo_coeff = mc.mo_coeff
    if ci is None: ci = mc.ci
    if casdm1 is None:
        casdm1 = mc.fcisolver.make_rdm1(ci, mc.ncas, mc.nelecas)
    ncore = mc.ncore
    nocc = ncore + mc.ncas
    nmo = mo_coeff.shape[1]
    fock_ao = mc.get_fock(mo_coeff, ci, eris, casdm1, verbose)
    fock = reduce(numpy.dot, (mo_coeff.T, fock_ao, mo_coeff))
    mo_energy = fock.diagonal().copy()
    if cas_natorb:
        mo_coeff1, ci, occ = mc.cas_natorb(mo_coeff, ci, eris, sort, casdm1,
                                           verbose)
        ma = mo_coeff1[:,ncore:nocc]
        mo_energy[ncore:nocc] = numpy.einsum('ji,ji->i', ma, fock_ao.dot(ma))
    else:
# Keep the active space unchanged by default.  The rotation in active space
# may cause problem for external CI solver eg DMRG.
        mo_coeff1 = numpy.empty_like(mo_coeff)
        mo_coeff1[:,ncore:nocc] = mo_coeff[:,ncore:nocc]
    if ncore > 0:
        # note the last two args of ._eig for mc1step_symm
        # mc._eig function is called to handle symmetry adapated fock
        w, c1 = mc._eig(fock[:ncore,:ncore], 0, ncore)
        if sort:
            idx = numpy.argsort(w.round(9), kind='mergesort')
            w = w[idx]
            c1 = c1[:,idx]
        mo_coeff1[:,:ncore] = numpy.dot(mo_coeff[:,:ncore], c1)
        mo_energy[:ncore] = w
    if nmo-nocc > 0:
        w, c1 = mc._eig(fock[nocc:,nocc:], nocc, nmo)
        if sort:
            idx = numpy.argsort(w.round(9), kind='mergesort')
            w = w[idx]
            c1 = c1[:,idx]
        mo_coeff1[:,nocc:] = numpy.dot(mo_coeff[:,nocc:], c1)
        mo_energy[nocc:] = w

    if hasattr(mo_coeff, 'orbsym'):
        if sort:
            orbsym = symm.label_orb_symm(mc.mol, mc.mol.irrep_id,
                                         mc.mol.symm_orb, mo_coeff1)
        else:
            orbsym = mo_coeff.orbsym
        mo_coeff1 = lib.tag_array(mo_coeff1, orbsym=orbsym)

    if log.verbose >= logger.DEBUG:
        for i in range(nmo):
            log.debug('i = %d  <i|F|i> = %12.8f', i+1, mo_energy[i])
# still return ci coefficients, in case the canonicalization funciton changed
# cas orbitals, the ci coefficients should also be updated.
    return mo_coeff1, ci, mo_energy
示例#54
0
def get_nto(tdobj, state=1, threshold=OUTPUT_THRESHOLD, verbose=None):
    r'''
    Natural transition orbital analysis.

    The natural transition density matrix between ground state and excited
    state :math:`Tia = \langle \Psi_{ex} | i a^\dagger | \Psi_0 \rangle` can
    be transformed to diagonal form through SVD
    :math:`T = O \sqrt{\lambda} V^\dagger`. O and V are occupied and virtual
    natural transition orbitals. The diagonal elements :math:`\lambda` are the
    weights of the occupied-virtual orbital pair in the excitation.

    Ref: Martin, R. L., JCP, 118, 4775-4777

    Note in the TDHF/TDDFT calculations, the excitation part (X) is
    interpreted as the CIS coefficients and normalized to 1. The de-excitation
    part (Y) is ignored.

    Args:
        state : int
            Excited state ID.  state = 1 means the first excited state.
            If state < 0, state ID is counted from the last excited state.

    Kwargs:
        threshold : float
            Above which the NTO coefficients will be printed in the output.

    Returns:
        A list (weights, NTOs).  NTOs are natural orbitals represented in AO
        basis. The first N_occ NTOs are occupied NTOs and the rest are virtual
        NTOs.
    '''
    if state == 0:
        logger.warn(
            tdobj, 'Excited state starts from 1. '
            'Set state=1 for first excited state.')
        state_id = state
    elif state < 0:
        state_id = state
    else:
        state_id = state - 1

    mol = tdobj.mol
    mo_coeff = tdobj._scf.mo_coeff
    mo_occ = tdobj._scf.mo_occ
    orbo_a = mo_coeff[0][:, mo_occ[0] == 1]
    orbv_a = mo_coeff[0][:, mo_occ[0] == 0]
    orbo_b = mo_coeff[1][:, mo_occ[1] == 1]
    orbv_b = mo_coeff[1][:, mo_occ[1] == 0]
    nocc_a = orbo_a.shape[1]
    nvir_a = orbv_a.shape[1]
    nocc_b = orbo_b.shape[1]
    nvir_b = orbv_b.shape[1]

    cis_t1a, cis_t1b = tdobj.xy[state_id][0]
    norm = numpy.linalg.norm(cis_t1a)**2 + numpy.linalg.norm(cis_t1b)**2
    cis_t1a *= 1. / norm
    cis_t1b *= 1. / norm

    if mol.symmetry:
        orbsyma, orbsymb = uhf_symm.get_orbsym(mol, mo_coeff)
        o_sym_a = orbsyma[mo_occ[0] == 1]
        v_sym_a = orbsyma[mo_occ[0] == 0]
        o_sym_b = orbsymb[mo_occ[1] == 1]
        v_sym_b = orbsymb[mo_occ[1] == 0]
        nto_o_a = numpy.eye(nocc_a)
        nto_v_a = numpy.eye(nvir_a)
        nto_o_b = numpy.eye(nocc_b)
        nto_v_b = numpy.eye(nvir_b)
        weights_o_a = numpy.zeros(nocc_a)
        weights_v_a = numpy.zeros(nvir_a)
        weights_o_b = numpy.zeros(nocc_b)
        weights_v_b = numpy.zeros(nvir_b)

        for ir in set(orbsyma):
            idx = numpy.where(o_sym_a == ir)[0]
            if idx.size > 0:
                dm_oo = numpy.dot(cis_t1a[idx], cis_t1a[idx].T)
                weights_o_a[idx], nto_o_a[idx[:, None],
                                          idx] = numpy.linalg.eigh(dm_oo)

            idx = numpy.where(v_sym_a == ir)[0]
            if idx.size > 0:
                dm_vv = numpy.dot(cis_t1a[:, idx].T, cis_t1a[:, idx])
                weights_v_a[idx], nto_v_a[idx[:, None],
                                          idx] = numpy.linalg.eigh(dm_vv)

        for ir in set(orbsymb):
            idx = numpy.where(o_sym_b == ir)[0]
            if idx.size > 0:
                dm_oo = numpy.dot(cis_t1b[idx], cis_t1b[idx].T)
                weights_o_b[idx], nto_o_b[idx[:, None],
                                          idx] = numpy.linalg.eigh(dm_oo)

            idx = numpy.where(v_sym_b == ir)[0]
            if idx.size > 0:
                dm_vv = numpy.dot(cis_t1b[:, idx].T, cis_t1b[:, idx])
                weights_v_b[idx], nto_v_b[idx[:, None],
                                          idx] = numpy.linalg.eigh(dm_vv)

        def sort(weights, nto, sym):
            # weights in descending order
            idx = numpy.argsort(-weights)
            weights = weights[idx]
            nto = nto[:, idx]
            sym = sym[idx]
            return weights, nto, sym

        weights_o_a, nto_o_a, o_sym_a = sort(weights_o_a, nto_o_a, o_sym_a)
        weights_v_a, nto_v_a, v_sym_a = sort(weights_v_a, nto_v_a, v_sym_a)
        weights_o_b, nto_o_b, o_sym_b = sort(weights_o_b, nto_o_b, o_sym_b)
        weights_v_b, nto_v_b, v_sym_b = sort(weights_v_b, nto_v_b, v_sym_b)

        nto_orbsyma = numpy.hstack((o_sym_a, v_sym_a))
        nto_orbsymb = numpy.hstack((o_sym_b, v_sym_b))

        if nocc_a < nvir_a:
            weights_a = weights_o_a
        else:
            weights_a = weights_v_a
        if nocc_b < nvir_b:
            weights_b = weights_o_b
        else:
            weights_b = weights_v_b

    else:
        nto_o_a, w_a, nto_v_aT = numpy.linalg.svd(cis_t1a)
        nto_o_b, w_b, nto_v_bT = numpy.linalg.svd(cis_t1b)
        nto_v_a = nto_v_aT.conj().T
        nto_v_b = nto_v_bT.conj().T
        weights_a = w_a**2
        weights_b = w_b**2
        nto_orbsyma = nto_orbsymb = None

    def _set_phase_(c):
        idx = numpy.argmax(abs(c.real), axis=0)
        c[:, c[idx, numpy.arange(c.shape[1])].real < 0] *= -1

    _set_phase_(nto_o_a)
    _set_phase_(nto_o_b)
    _set_phase_(nto_v_a)
    _set_phase_(nto_v_b)

    occupied_nto_a = numpy.dot(orbo_a, nto_o_a)
    occupied_nto_b = numpy.dot(orbo_b, nto_o_b)
    virtual_nto_a = numpy.dot(orbv_a, nto_v_a)
    virtual_nto_b = numpy.dot(orbv_b, nto_v_b)
    nto_coeff = (numpy.hstack((occupied_nto_a, virtual_nto_a)),
                 numpy.hstack((occupied_nto_b, virtual_nto_b)))

    if mol.symmetry:
        nto_coeff = (lib.tag_array(nto_coeff[0], orbsym=nto_orbsyma),
                     lib.tag_array(nto_coeff[1], orbsym=nto_orbsymb))

    log = logger.new_logger(tdobj, verbose)
    if log.verbose >= logger.INFO:
        log.info('State %d: %g eV  NTO largest component %s', state_id + 1,
                 tdobj.e[state_id] * nist.HARTREE2EV,
                 weights_a[0] + weights_b[0])
        fmt = '%' + str(lib.param.OUTPUT_DIGITS) + 'f (MO #%d)'
        o_idx_a = numpy.where(abs(nto_o_a[:, 0]) > threshold)[0]
        v_idx_a = numpy.where(abs(nto_v_a[:, 0]) > threshold)[0]
        o_idx_b = numpy.where(abs(nto_o_b[:, 0]) > threshold)[0]
        v_idx_b = numpy.where(abs(nto_v_b[:, 0]) > threshold)[0]
        log.info('    alpha occ-NTO: ' +
                 ' + '.join([(fmt % (nto_o_a[i, 0], i + MO_BASE))
                             for i in o_idx_a]))
        log.info('    alpha vir-NTO: ' +
                 ' + '.join([(fmt % (nto_v_a[i, 0], i + MO_BASE + nocc_a))
                             for i in v_idx_a]))
        log.info('    beta occ-NTO: ' +
                 ' + '.join([(fmt % (nto_o_b[i, 0], i + MO_BASE))
                             for i in o_idx_b]))
        log.info('    beta vir-NTO: ' +
                 ' + '.join([(fmt % (nto_v_b[i, 0], i + MO_BASE + nocc_b))
                             for i in v_idx_b]))
    return (weights_a, weights_b), nto_coeff
示例#55
0
文件: ddcosmo.py 项目: zwang123/pyscf
 def get_veff(self, mol, dm, *args, **kwargs):
     vhf = oldMF.get_veff(self, mol, dm)
     epcm, vpcm = cosmo_solver(dm)
     vhf += vpcm
     return lib.tag_array(vhf, epcm=epcm, vpcm=vpcm)
示例#56
0
文件: gks.py 项目: tmash/pyscf
def get_veff(ks, mol=None, dm=None, dm_last=0, vhf_last=0, hermi=1):
    '''Coulomb + XC functional for GKS.
    '''
    if mol is None: mol = ks.mol
    if dm is None: dm = ks.make_rdm1()
    t0 = (time.clock(), time.time())

    ground_state = (isinstance(dm, numpy.ndarray) and dm.ndim == 2)

    assert (hermi == 1)
    dm = numpy.asarray(dm)
    nso = dm.shape[-1]
    nao = nso // 2
    dm_a = dm[..., :nao, :nao].real
    dm_b = dm[..., nao:, nao:].real

    if ks.grids.coords is None:
        ks.grids.build(with_non0tab=True)
        if ks.small_rho_cutoff > 1e-20 and ground_state:
            ks.grids = rks.prune_small_rho_grids_(ks, mol, dm_a + dm_b,
                                                  ks.grids)
        t0 = logger.timer(ks, 'setting up grids', *t0)
    if ks.nlc != '':
        if ks.nlcgrids.coords is None:
            ks.nlcgrids.build(with_non0tab=True)
            if ks.small_rho_cutoff > 1e-20 and ground_state:
                ks.nlcgrids = rks.prune_small_rho_grids_(
                    ks, mol, dm_a + dm_b, ks.nlcgrids)
            t0 = logger.timer(ks, 'setting up nlc grids', *t0)

    max_memory = ks.max_memory - lib.current_memory()[0]
    ni = ks._numint
    n, exc, vxc = ni.nr_uks(mol,
                            ks.grids,
                            ks.xc, (dm_a, dm_b),
                            max_memory=max_memory)
    if ks.nlc != '':
        assert ('VV10' in ks.nlc.upper())
        _, enlc, vnlc = ni.nr_rks(mol,
                                  ks.nlcgrids,
                                  ks.xc + '__' + ks.nlc,
                                  dm_a + dm_b,
                                  max_memory=max_memory)
        exc += enlc
        vxc += vnlc
    logger.debug(ks, 'nelec by numeric integration = %s', n)
    t0 = logger.timer(ks, 'vxc', *t0)
    if vxc.ndim == 4:
        raise NotImplementedError
    vxc = numpy.asarray(scipy.linalg.block_diag(*vxc), dtype=dm.dtype)

    #enabling range-separated hybrids
    omega, alpha, hyb = ni.rsh_and_hybrid_coeff(ks.xc, spin=mol.spin)

    if abs(hyb) < 1e-10 and abs(alpha) < 1e-10:
        vk = None
        if (ks._eri is None and ks.direct_scf
                and getattr(vhf_last, 'vj', None) is not None):
            ddm = numpy.asarray(dm) - numpy.asarray(dm_last)
            vj = ks.get_j(mol, ddm, hermi)
            vj += vhf_last.vj
        else:
            vj = ks.get_j(mol, dm, hermi)
        vxc += vj
    else:
        if (ks._eri is None and ks.direct_scf
                and getattr(vhf_last, 'vk', None) is not None):
            ddm = numpy.asarray(dm) - numpy.asarray(dm_last)
            vj, vk = ks.get_jk(mol, ddm, hermi)
            vk *= hyb
            if abs(omega) > 1e-10:
                vklr = ks.get_k(mol, ddm, hermi, omega=omega)
                vklr *= (alpha - hyb)
                vk += vklr
            vj += vhf_last.vj
            vk += vhf_last.vk
        else:
            vj, vk = ks.get_jk(mol, dm, hermi)
            vk *= hyb
            if abs(omega) > 1e-10:
                vklr = ks.get_k(mol, dm, hermi, omega=omega)
                vklr *= (alpha - hyb)
                vk += vklr
        vxc += vj - vk

        if ground_state:
            exc -= numpy.einsum('ij,ji', dm, vk).real * .5
    if ground_state:
        ecoul = numpy.einsum('ij,ji', dm, vj).real * .5
    else:
        ecoul = None

    vxc = lib.tag_array(vxc, ecoul=ecoul, exc=exc, vj=vj, vk=vk)
    return vxc
示例#57
0
def get_veff(ks,
             cell=None,
             dm=None,
             dm_last=0,
             vhf_last=0,
             hermi=1,
             kpt=None,
             kpts_band=None):
    '''Coulomb + XC functional for UKS.  See pyscf/pbc/dft/uks.py
    :func:`get_veff` fore more details.
    '''
    if cell is None: cell = ks.cell
    if dm is None: dm = ks.make_rdm1()
    if kpt is None: kpt = ks.kpt
    t0 = (time.clock(), time.time())

    omega, alpha, hyb = ks._numint.rsh_and_hybrid_coeff(ks.xc, spin=cell.spin)
    hybrid = abs(hyb) > 1e-10 or abs(alpha) > 1e-10

    if not hybrid and isinstance(ks.with_df, multigrid.MultiGridFFTDF):
        n, exc, vxc = multigrid.nr_uks(ks.with_df,
                                       ks.xc,
                                       dm,
                                       hermi,
                                       kpt.reshape(1, 3),
                                       kpts_band,
                                       with_j=True,
                                       return_j=False)
        logger.debug(ks, 'nelec by numeric integration = %s', n)
        t0 = logger.timer(ks, 'vxc', *t0)
        return vxc

    # ndim = 3 : dm.shape = ([alpha,beta], nao, nao)
    ground_state = (dm.ndim == 3 and dm.shape[0] == 2 and kpts_band is None)

    if ks.grids.non0tab is None:
        ks.grids.build(with_non0tab=True)
        if (isinstance(ks.grids, gen_grid.BeckeGrids)
                and ks.small_rho_cutoff > 1e-20 and ground_state):
            ks.grids = rks.prune_small_rho_grids_(ks, cell, dm, ks.grids, kpt)
        t0 = logger.timer(ks, 'setting up grids', *t0)

    if not isinstance(dm, numpy.ndarray):
        dm = numpy.asarray(dm)
    if dm.ndim == 2:  # RHF DM
        dm = numpy.asarray((dm * .5, dm * .5))

    if hermi == 2:  # because rho = 0
        n, exc, vxc = (0, 0), 0, 0
    else:
        n, exc, vxc = ks._numint.nr_uks(cell, ks.grids, ks.xc, dm, 0, kpt,
                                        kpts_band)
        logger.debug(ks, 'nelec by numeric integration = %s', n)
        t0 = logger.timer(ks, 'vxc', *t0)

    if not hybrid:
        vj = ks.get_j(cell, dm[0] + dm[1], hermi, kpt, kpts_band)
        vxc += vj
    else:
        if getattr(ks.with_df, '_j_only', False):  # for GDF and MDF
            ks.with_df._j_only = False
        vj, vk = ks.get_jk(cell, dm, hermi, kpt, kpts_band)
        vj = vj[0] + vj[1]
        vk *= hyb
        if abs(omega) > 1e-10:
            vklr = ks.get_k(cell, dm, hermi, kpt, kpts_band, omega=omega)
            vklr *= (alpha - hyb)
            vk += vklr
        vxc += vj - vk

        if ground_state:
            exc -= (numpy.einsum('ij,ji', dm[0], vk[0]) +
                    numpy.einsum('ij,ji', dm[1], vk[1])).real * .5

    if ground_state:
        ecoul = numpy.einsum('ij,ji', dm[0] + dm[1], vj).real * .5
    else:
        ecoul = None

    vxc = lib.tag_array(vxc, ecoul=ecoul, exc=exc, vj=None, vk=None)
    return vxc
示例#58
0
def get_veff(ks_grad, mol=None, dm=None):
    '''Coulomb + XC functional
    '''
    if mol is None: mol = ks_grad.mol
    if dm is None: dm = ks_grad.base.make_rdm1()
    t0 = (logger.process_clock(), logger.perf_counter())

    mf = ks_grad.base
    ni = mf._numint
    if ks_grad.grids is not None:
        grids = ks_grad.grids
    else:
        grids = mf.grids
    if grids.coords is None:
        grids.build(with_non0tab=True)

    if mf.nlc != '':
        raise NotImplementedError
    #enabling range-separated hybrids
    omega, alpha, hyb = ni.rsh_and_hybrid_coeff(mf.xc, spin=mol.spin)

    mem_now = lib.current_memory()[0]
    max_memory = max(2000, ks_grad.max_memory * .9 - mem_now)
    if ks_grad.grid_response:
        exc, vxc = rks_grad.get_vxc_full_response(ni,
                                                  mol,
                                                  grids,
                                                  mf.xc,
                                                  dm,
                                                  max_memory=max_memory,
                                                  verbose=ks_grad.verbose)
        logger.debug1(ks_grad, 'sum(grids response) %s', exc.sum(axis=0))
    else:
        exc, vxc = rks_grad.get_vxc(ni,
                                    mol,
                                    grids,
                                    mf.xc,
                                    dm,
                                    max_memory=max_memory,
                                    verbose=ks_grad.verbose)
    t0 = logger.timer(ks_grad, 'vxc', *t0)

    if abs(hyb) < 1e-10 and abs(alpha) < 1e-10:
        vj = ks_grad.get_j(mol, dm)
        vxc += vj
        if ks_grad.auxbasis_response:
            e1_aux = vj.aux
    else:
        vj, vk = ks_grad.get_jk(mol, dm)
        if ks_grad.auxbasis_response:
            vk_aux = vk.aux * hyb
        vk *= hyb
        if abs(omega) > 1e-10:  # For range separated Coulomb operator
            raise NotImplementedError
            vk_lr = ks_grad.get_k(mol, dm, omega=omega)
            vk += vk_lr * (alpha - hyb)
            if ks_grad.auxbasis_response:
                vk_aux += vk_lr.aux * (alpha - hyb)
        vxc += vj - vk * .5
        if ks_grad.auxbasis_response:
            e1_aux = vj.aux - vk_aux * .5

    if ks_grad.auxbasis_response:
        logger.debug1(ks_grad, 'sum(auxbasis response) %s', e1_aux.sum(axis=0))
        vxc = lib.tag_array(vxc, exc1_grid=exc, aux=e1_aux)
    else:
        vxc = lib.tag_array(vxc, exc1_grid=exc)
    return vxc
示例#59
0
文件: uks.py 项目: pyscf/properties
def dia(magobj, gauge_orig=None):
    mol = magobj.mol
    mf = magobj._scf
    mo_energy = magobj._scf.mo_energy
    mo_coeff = magobj._scf.mo_coeff
    mo_occ = magobj._scf.mo_occ
    orboa = mo_coeff[0][:,mo_occ[0] > 0]
    orbob = mo_coeff[1][:,mo_occ[1] > 0]
    dm0a = lib.tag_array(orboa.dot(orboa.T), mo_coeff=mo_coeff[0], mo_occ=mo_occ[0])
    dm0b = lib.tag_array(orbob.dot(orbob.T), mo_coeff=mo_coeff[1], mo_occ=mo_occ[1])
    dm0 = dm0a + dm0b
    dme0a = numpy.dot(orboa * mo_energy[0][mo_occ[0] > 0], orboa.T)
    dme0b = numpy.dot(orbob * mo_energy[1][mo_occ[1] > 0], orbob.T)
    dme0 = dme0a + dme0b

    e2 = rhf_mag._get_dia_1e(magobj, gauge_orig, dm0, dme0)

    if gauge_orig is not None:
        return -e2

    # Computing the 2nd order Vxc integrals from GIAO
    grids = mf.grids
    ni = mf._numint
    xc_code = mf.xc
    xctype = ni._xc_type(xc_code)
    omega, alpha, hyb = ni.rsh_and_hybrid_coeff(xc_code, mol.spin)

    make_rhoa, nset, nao = ni._gen_rho_evaluator(mol, dm0a, hermi=1)
    make_rhob            = ni._gen_rho_evaluator(mol, dm0b, hermi=1)[0]
    ngrids = len(grids.weights)
    mem_now = lib.current_memory()[0]
    max_memory = max(2000, mf.max_memory*.9-mem_now)
    BLKSIZE = numint.BLKSIZE
    blksize = min(int(max_memory/12*1e6/8/nao/BLKSIZE)*BLKSIZE, ngrids)

    vmata = numpy.zeros((3,3,nao,nao))
    vmatb = numpy.zeros((3,3,nao,nao))
    if xctype == 'LDA':
        ao_deriv = 0
        for ao, mask, weight, coords \
                in ni.block_loop(mol, grids, nao, ao_deriv, max_memory,
                                 blksize=blksize):
            rho = (make_rhoa(0, ao, mask, 'LDA'),
                   make_rhob(0, ao, mask, 'LDA'))
            vxc = ni.eval_xc(xc_code, rho, spin=1, deriv=1)[1]
            vrho = vxc[0]
            r_ao = numpy.einsum('pi,px->pxi', ao, coords)
            aow = numpy.einsum('pxi,p,p->pxi', r_ao, weight, vrho[:,0])
            vmata += lib.einsum('pxi,pyj->xyij', r_ao, aow)
            aow = numpy.einsum('pxi,p,p->pxi', r_ao, weight, vrho[:,1])
            vmatb += lib.einsum('pxi,pyj->xyij', r_ao, aow)
            rho = vxc = vrho = aow = None

    elif xctype == 'GGA':
        ao_deriv = 1
        for ao, mask, weight, coords \
                in ni.block_loop(mol, grids, nao, ao_deriv, max_memory,
                                 blksize=blksize):
            rho = (make_rhoa(0, ao, mask, 'GGA'),
                   make_rhob(0, ao, mask, 'GGA'))
            vxc = ni.eval_xc(xc_code, rho, spin=1, deriv=1)[1]
            wva, wvb = numint._uks_gga_wv0(rho, vxc, weight)

            # Computing \nabla (r * AO) = r * \nabla AO + [\nabla,r]_- * AO
            r_ao = numpy.einsum('npi,px->npxi', ao, coords)
            r_ao[1,:,0] += ao[0]
            r_ao[2,:,1] += ao[0]
            r_ao[3,:,2] += ao[0]

            aow = numpy.einsum('npxi,np->pxi', r_ao, wva)
            vmata += lib.einsum('pxi,pyj->xyij', r_ao[0], aow)
            aow = numpy.einsum('npxi,np->pxi', r_ao, wvb)
            vmata += lib.einsum('pxi,pyj->xyij', r_ao[0], aow)
            rho = vxc = vrho = aow = None

        vmata = vmata + vmata.transpose(0,1,3,2)
        vmatb = vmatb + vmatb.transpose(0,1,3,2)

    elif xctype == 'MGGA':
        raise NotImplementedError('meta-GGA')

    vmata = rks_mag._add_giao_phase(mol, vmata)
    vmatb = rks_mag._add_giao_phase(mol, vmatb)
    e2 += numpy.einsum('qp,xypq->xy', dm0a, vmata)
    e2 += numpy.einsum('qp,xypq->xy', dm0b, vmatb)
    vmata = vmatb = None

    e2 = e2.ravel()
    # Handle the hybrid functional and the range-separated functional
    if abs(hyb) > 1e-10:
        vs = jk.get_jk(mol, [dm0, dm0a, dm0a, dm0b, dm0b],
                       ['ijkl,ji->s2kl',
                        'ijkl,jk->s1il', 'ijkl,li->s1kj',
                        'ijkl,jk->s1il', 'ijkl,li->s1kj'],
                       'int2e_gg1', 's4', 9, hermi=1)
        e2 += numpy.einsum('xpq,qp->x', vs[0], dm0)
        e2 -= numpy.einsum('xpq,qp->x', vs[1], dm0a) * .5 * hyb
        e2 -= numpy.einsum('xpq,qp->x', vs[2], dm0a) * .5 * hyb
        e2 -= numpy.einsum('xpq,qp->x', vs[3], dm0b) * .5 * hyb
        e2 -= numpy.einsum('xpq,qp->x', vs[4], dm0b) * .5 * hyb
        vk = jk.get_jk(mol, [dm0a, dm0b], ['ijkl,jk->s1il', 'ijkl,jk->s1il'],
                       'int2e_g1g2', 'aa4', 9, hermi=0)
        e2 -= numpy.einsum('xpq,qp->x', vk[0], dm0a) * hyb
        e2 -= numpy.einsum('xpq,qp->x', vk[1], dm0b) * hyb

        if abs(omega) > 1e-10:
            with mol.with_range_coulomb(omega):
                vs = jk.get_jk(mol, [dm0a, dm0a, dm0b, dm0b],
                               ['ijkl,jk->s1il', 'ijkl,li->s1kj',
                                'ijkl,jk->s1il', 'ijkl,li->s1kj'],
                               'int2e_gg1', 's4', 9, hermi=1)
                e2 -= numpy.einsum('xpq,qp->x', vs[0], dm0a) * .5 * (alpha-hyb)
                e2 -= numpy.einsum('xpq,qp->x', vs[1], dm0a) * .5 * (alpha-hyb)
                e2 -= numpy.einsum('xpq,qp->x', vs[2], dm0b) * .5 * (alpha-hyb)
                e2 -= numpy.einsum('xpq,qp->x', vs[3], dm0b) * .5 * (alpha-hyb)
                vk = jk.get_jk(mol, [dm0a, dm0b], ['ijkl,jk->s1il', 'ijkl,jk->s1il'],
                               'int2e_g1g2', 'aa4', 9, hermi=0)
                e2 -= numpy.einsum('xpq,qp->x', vk[0], dm0a) * (alpha-hyb)
                e2 -= numpy.einsum('xpq,qp->x', vk[1], dm0b) * (alpha-hyb)

    else:
        vj = jk.get_jk(mol, dm0, 'ijkl,ji->s2kl',
                       'int2e_gg1', 's4', 9, hermi=1)
        e2 += numpy.einsum('xpq,qp->x', vj, dm0)

    return -e2.reshape(3, 3)
示例#60
0
def label_symmetry_(mc, mo_coeff, ci0=None):
    log = logger.Logger(mc.stdout, mc.verbose)
    #irrep_name = mc.mol.irrep_name
    irrep_name = mc.mol.irrep_id
    s = mc._scf.get_ovlp()
    try:
        orbsym = scf.hf_symm.get_orbsym(mc._scf.mol, mo_coeff, s, True)
    except ValueError:
        log.warn('mc1step_symm symmetrizes input orbitals')
        ncore = mc.ncore
        nocc = mc.ncore + mc.ncas
        mo_cor = symm.symmetrize_space(mc.mol, mo_coeff[:,    :ncore], s=s, check=False)
        mo_act = symm.symmetrize_space(mc.mol, mo_coeff[:,ncore:nocc], s=s, check=False)
        mo_vir = symm.symmetrize_space(mc.mol, mo_coeff[:,nocc:     ], s=s, check=False)
        mo_coeff = numpy.hstack((mo_cor,mo_act,mo_vir))
        orbsym = symm.label_orb_symm(mc.mol, irrep_name,
                                     mc.mol.symm_orb, mo_coeff, s=s)
    mo_coeff_with_orbsym = lib.tag_array(mo_coeff, orbsym=orbsym)

    active_orbsym = getattr(mc.fcisolver, 'orbsym', [])
    if (not hasattr(active_orbsym, '__len__')) or len(active_orbsym) == 0:
        ncore = mc.ncore
        nocc = mc.ncore + mc.ncas
        mc.fcisolver.orbsym = orbsym[ncore:nocc]
    log.debug('Active space irreps %s', str(mc.fcisolver.orbsym))

    wfnsym = 0
    if getattr(mc.fcisolver, 'wfnsym', None) is not None:
        wfnsym = mc.fcisolver.wfnsym

    elif ci0 is None:
        # Guess wfnsym based on HF determinant.  mo_coeff may not be HF
        # canonical orbitals.  Some checks are needed to ensure that mo_coeff
        # are derived from the symmetry adapted SCF calculations.
        if mo_coeff is mc._scf.mo_coeff:
            wfnsym = 0
            for ir in orbsym[mc._scf.mo_occ == 1]:
                wfnsym ^= ir
            mc.fcisolver.wfnsym = wfnsym
            log.debug('Set CASCI wfnsym %s based on HF determinant', wfnsym)
        elif hasattr(mo_coeff, 'orbsym'):  # It may be reordered SCF orbitals
            ncore = mc.ncore
            nocc = mc.ncore + mc.ncas
            cas_orb = mo_coeff[:,ncore:nocc]
            s = reduce(numpy.dot, (cas_orb.T, mc._scf.get_ovlp(), mc._scf.mo_coeff))
            if numpy.all(numpy.max(s, axis=1) > 1-1e-9):
                idx = numpy.argmax(s, axis=1)
                cas_orbsym = orbsym[ncore:nocc]
                cas_occ = mc._scf.mo_occ[idx]
                wfnsym = 0
                for ir in cas_orbsym[cas_occ == 1]:
                    wfnsym ^= ir
                mc.fcisolver.wfnsym = wfnsym
                log.debug('Active space are constructed from canonical SCF '
                          'orbitals %s', idx)
                log.debug('Set CASCI wfnsym %s based on HF determinant', wfnsym)

    elif hasattr(mc.fcisolver, 'guess_wfnsym'):
        wfnsym = mc.fcisolver.guess_wfnsym(mc.ncas, mc.nelecas, ci0, verbose=log)
        log.debug('CASCI wfnsym %s (based on CI initial guess)', wfnsym)

    if isinstance(wfnsym, (int, numpy.integer)):
        wfnsym = symm.irrep_id2name(mc.mol.groupname, wfnsym)

    log.info('Active space CI wfn symmetry = %s', wfnsym)

    return mo_coeff_with_orbsym