def make_rdm2(self, t2=None, ao_repr=False): if t2 is None: t2 = self.t2 assert t2 is not None return make_rdm2(self, t2, ao_repr=ao_repr)
def solve (mol, nel, cf_core, cf_gs, ImpOrbs, chempot=0., n_orth=0, FrozenPot=None, mf_tot=None): # cf_core : core orbitals (in AO basis, assumed orthonormal) # cf_gs : guess orbitals (in AO basis) # ImpOrbs : cf_gs -> impurity orbitals transformation # n_orth : number of orthonormal orbitals in cf_gs [1..n_orth] mol_ = gto.Mole() mol_.build (verbose=0) mol_.nelectron = nel mol_.incore_anyway = True cfx = cf_gs print("cfx shape", cfx.shape) Sf = mol.intor_symmetric('cint1e_ovlp_sph') Hc = mol.intor_symmetric('cint1e_kin_sph') \ + mol.intor_symmetric('cint1e_nuc_sph') \ + FrozenPot occ = np.zeros((cfx.shape[1],)) occ[:nel//2] = 2. # core contributions dm_core = np.dot(cf_core, cf_core.T)*2 jk_core = scf.hf.get_veff (mol, dm_core) e_core = np.trace(np.dot(Hc, dm_core)) \ + 0.5*np.trace(np.dot(jk_core, dm_core)) # transform integrals Sp = np.dot(cfx.T, np.dot(Sf, cfx)) Hp = np.dot(cfx.T, np.dot(Hc, cfx)) jkp = np.dot(cfx.T, np.dot(jk_core, cfx)) # density fitting ============================================================ # mf = scf.RHF(mol).density_fit() # this should be moved out of to the parent directory, to avoid repetition # mf.with_df._cderi_to_save = 'saved_cderi.h5' # rank-3 decomposition # mf.kernel() ### moved these three lines to orbital_selection_fc auxmol = df.incore.format_aux_basis(mol, auxbasis='weigend') j3c = df.incore.aux_e2(mol, auxmol, intor='cint3c2e_sph', aosym='s1') nao = mol.nao_nr() naoaux = auxmol.nao_nr() j3c = j3c.reshape(nao,nao,naoaux) # (ij|L) print("j3c shape", j3c.shape) j2c = df.incore.fill_2c2e(mol, auxmol) #(L|M) overlap matrix between auxiliary basis functions #the eri is (ij|kl) = \sum_LM (ij|L) (L|M) (M|kl) omega = sla.inv(j2c) eps,U = sla.eigh(omega) #after this transformation the eri is (ij|kl) = \sum_L (ij|L) (L|kl) j3c = np.dot(np.dot(j3c,U),np.diag(np.sqrt(eps))) #this part is slow, as we again store the whole eri_df # conv = np.einsum('prl,pi,rj->ijl', j3c, cfx, cfx) conv = np.einsum('prl,pi->irl',j3c,cfx) conv = np.einsum('irl,rj->ijl',conv,cfx) df_eri = np.einsum('ijm,klm->ijkl',conv,conv) intsp_df = ao2mo.restore(4, df_eri, cfx.shape[1]) print("DF instp", intsp_df.shape) # ============================================================================= # intsp = ao2mo.outcore.full_iofree (mol, cfx) #TODO: this we need to calculate on the fly using generator f'n # print("intsp shape", intsp.shape) # orthogonalize cf [virtuals] cf = np.zeros((cfx.shape[1],)*2,) if n_orth > 0: assert (n_orth <= cfx.shape[1]) assert (np.allclose(np.eye(n_orth), Sp[:n_orth,:n_orth])) else: n_orth = 0 cf[:n_orth,:n_orth] = np.eye(n_orth) if n_orth < cfx.shape[1]: val, vec = sla.eigh(-Sp[n_orth:,n_orth:]) idx = -val > 1.e-12 U = np.dot(vec[:,idx]*1./(np.sqrt(-val[idx])), \ vec[:,idx].T) cf[n_orth:,n_orth:] = U # define ImpOrbs projection Xp = np.dot(ImpOrbs, ImpOrbs.T) # Si = np.dot(ImpOrbs.T, np.dot(Sp, ImpOrbs)) # Mp = np.dot(ImpOrbs, np.dot(sla.inv(Si), ImpOrbs.T)) Np = np.dot(Sp, Xp) # print np.allclose(Np, np.dot(Np, np.dot(Mp, Np))) # HF calculation mol_.energy_nuc = lambda *args: mol.energy_nuc() + e_core mf1 = scf.RHF(mol_) #.density_fit() #mf.verbose = 4 mf1.mo_coeff = cf mf1.mo_occ = occ mf1.get_ovlp = lambda *args: Sp mf1.get_hcore = lambda *args: Hp + jkp - 0.5*chempot*(Np + Np.T) mf1._eri = ao2mo.restore (8, intsp_df, cfx.shape[1]) #trying something nt = scf.newton(mf1) #nt.verbose = 4 nt.max_cycle_inner = 1 nt.max_stepsize = 0.25 nt.ah_max_cycle = 32 nt.ah_start_tol = 1.0e-12 nt.ah_grad_trust_region = 1.0e8 nt.conv_tol_grad = 1.0e-6 nt.kernel() cf = nt.mo_coeff if not nt.converged: raise RuntimeError ('hf failed to converge') mo_coeff = nt.mo_coeff mo_energy = nt.mo_energy mo_occ = nt.mo_occ print("mo_coeff", mo_coeff) # dfMP2 solution nocc = nel//2 # mp2solver = dfmp2_testing.MP2(mf_tot) #(work) #we just pass the mf for the full molecule to dfmp2 mp2solver = dfmp2.DFMP2(mf_tot) #(work) #we just pass the mf for the full molecule to dfmp2 # mp2solver = dfmp2.MP2(mf) #(home) mp2solver.verbose = 5 mp2solver.kernel(mo_energy=mo_energy, mo_coeff=mo_coeff, nocc=nocc) mp2solver.mo_occ=mo_occ.copy() # this is DIRTY def get_t2(mp): '''basically identical to the DFMP2 kernel, returns t2''' from pyscf.mp import mp2 mo_coeff = mp2._mo_without_core(mp, mp.mo_coeff) # print("mo_coeff rdms", mo_coeff) mo_energy = mp2._mo_energy_without_core(mp, mp.mo_energy) nocc = mp.nocc nvir = mp.nmo - nocc eia = mo_energy[:nocc,None] - mo_energy[None,nocc:] emp2 = 0 t2 = [] for istep, qov in enumerate(mp.loop_ao2mo(mo_coeff, nocc)): for i in range(nocc): buf = np.dot(qov[:,i*nvir:(i+1)*nvir].T,qov).reshape(nvir,nocc,nvir) gi = np.array(buf,copy=False) gi = gi.reshape(nvir,nocc,nvir).transpose(1,0,2) t2i = gi.conj()/lib.direct_sum('jb+a->jba',eia,eia[i]) t2.append(t2i) emp2 += np.einsum('jab,jab',t2i,gi) * 2 emp2 -= np.einsum('jab,jba',t2i,gi) return emp2,t2 def make_rdm1(mp2solver): '''rdm1 in the MO basis''' from pyscf.cc import ccsd_rdm doo, dvv = _gamma1_intermediates(mp2solver) nocc = doo.shape[0] nvir = dvv.shape[0] print('nocc', nocc) print('nvir', nvir) dov = np.zeros((nocc,nvir), dtype=doo.dtype) dvo = dov.T return ccsd_rdm._make_rdm1(mp,(doo,dov,dvo,dvv),with_frozen=False) def _gamma1_intermediates(mp,t2=None): nmo = mp.nmo nocc = mp.nocc nvir = nmo - nocc from pyscf.mp import mp2 mo_coeff = mp2._mo_without_core(mp, mp.mo_coeff) print("mo coeff rdms", mo_coeff) print('nmo, nocc, nvir, mo_coeff shape') print(nmo, nocc, nvir, mp.mo_coeff.shape) mo_energy = mp2._mo_energy_without_core(mp, mp.mo_energy) eia = mo_energy[:nocc,None] - mo_energy[None,nocc:] if(t2 is None): for istep, qov in enumerate(mp.loop_ao2mo(mo_coeff, nocc)): if(istep==0): dtype = qov.dtype dm1occ = np.zeros((nocc,nocc), dtype=dtype) dm1vir = np.zeros((nvir,nvir), dtype=dtype) for i in range(nocc): buf = np.dot(qov[:,i*nvir:(i+1)*nvir].T, qov).reshape(nvir,nocc,nvir) gi = np.array(buf, copy=False) gi = gi.reshape(nvir,nocc,nvir).transpose(1,0,2) t2i = gi/lib.direct_sum('jb+a->jba', eia, eia[i]) l2i = t2i.conj() dm1vir += np.einsum('jca,jcb->ba', l2i, t2i) * 2 \ - np.einsum('jca,jbc->ba', l2i, t2i) dm1occ += np.einsum('iab,jab->ij', l2i, t2i) * 2 \ - np.einsum('iab,jba->ij', l2i, t2i) else: dtype = t2[0].dtype dm1occ = np.zeros((nocc,nocc), dtype=dtype) dm1vir = np.zeros((nvir,nvir), dtype=dtype) for i in range(nocc): t2i = t2[i] l2i = t2i.conj() dm1vir += np.einsum('jca,jcb->ba', l2i, t2i) * 2 \ - np.einsum('jca,jbc->ba', l2i, t2i) dm1occ += np.einsum('iab,jab->ij', l2i, t2i) * 2 \ - np.einsum('iab,jba->ij', l2i, t2i) return -dm1occ, dm1vir def make_rdm2(mp2solver): nmo = nmo0 = mp2solver.nmo nocc = nocc0 = mp2solver.nocc nvir = nmo - nocc from pyscf.mp import mp2 mo_coeff = mp2._mo_without_core(mp2solver, mp2solver.mo_coeff) mo_energy = mp2._mo_energy_without_core(mp2solver, mp2solver.mo_energy) eia = mo_energy[:nocc,None] - mo_energy[None,nocc:] moidx = oidx = vidx = None dm1 = make_rdm1(mp2solver) dm1[np.diag_indices(nocc0)] -= 2 dm2 = np.zeros((nmo0,nmo0,nmo0,nmo0), dtype=dm1.dtype) if(t2 is None): for istep, qov in enumerate(mp2solver.loop_ao2mo(mo_coeff, nocc)): for i in range(nocc): buf = np.dot(qov[:,i*nvir:(i+1)*nvir].T,qov).reshape(nvir,nocc,nvir) gi = np.array(buf,copy=False) gi = gi.reshape(nvir,nocc,nvir).transpose(1,0,2) t2i = gi.conj()/lib.direct_sum('jb+a->jba',eia,eia[i]) dovov = t2i.transpose(1,0,2)*2 - t2i.transpose(2,0,1) dovov *= 2 if moidx is None: dm2[i,nocc:,:nocc,nocc:] = dovov dm2[nocc:,i,nocc:,:nocc] = dovov.conj().transpose(0,2,1) else: dm2[oidx[i],vidx[:,None,None],oidx[:,None],vidx] = dovov dm2[vidx[:,None,None],oidx[i],vidx[:,None],oidx] = dovov.conj().transpose(0,2,1) else: for i in range(nocc): t2i = t2[i] dovov = t2i.transpose(1,0,2)*2 - t2i.transpose(2,0,1) dovov *= 2 if moidx is None: dm2[i,nocc:,:nocc,nocc:] = dovov dm2[nocc:,i,nocc:,:nocc] = dovov.conj().transpose(0,2,1) else: dm2[oidx[i],vidx[:,None,None],oidx[:,None],vidx] = dovov dm2[vidx[:,None,None],oidx[i],vidx[:,None],oidx] = dovov.conj().transpose(0,2,1) for i in range(nocc0): dm2[i,i,:,:] += dm1.T * 2 dm2[:,:,i,i] += dm1.T * 2 dm2[:,i,i,:] -= dm1.T dm2[i,:,:,i] -= dm1 for i in range(nocc0): for j in range(nocc0): dm2[i,i,j,j] += 4 dm2[i,j,j,i] -= 2 return dm2 t2 = None rdm1 = make_rdm1(mp2solver) rdm2 = make_rdm2(mp2solver) # # ------------------------------------- # TEST: compare rdm dmet with dfmp2 rdms # atoms_test=\ # [['C',( 0.0000, 0.0000, 0.7680)],\ # ['C',( 0.0000, 0.0000,-0.7680)],\ # ['H',(-1.0192, 0.0000, 1.1573)],\ # ['H',( 0.5096, 0.8826, 1.1573)],\ # ['H',( 0.5096,-0.8826, 1.1573)],\ # ['H',( 1.0192, 0.0000,-1.1573)],\ # ['H',(-0.5096,-0.8826,-1.1573)],\ # ['H',(-0.5096, 0.8826,-1.1573)]] atoms_test = [ ['O' , (0. , 0. , 0.)],\ ['H' , (0. , -0.757 , 0.587)],\ ['H' , (0. , 0.757 , 0.587)]] mol_test = gto.M(atom=atoms_test,basis='cc-pvdz') m_test = scf.RHF(mol_test).density_fit() m_test.kernel() mm_test = dfmp2.DFMP2(m_test) mm_test.kernel() from pyscf.mp import mp2 rdm1_test = mp2.make_rdm1(mm_test) rdm2_test = mp2.make_rdm2(mm_test) # Plot sorted rdm1 values x1 = rdm1 y1 = x1.flatten() y1 = np.sort(y1) import matplotlib.pyplot as plt plt.plot(y1, 'r', label='rdm1 from dmet') plt.ylabel('rdm1') x2 = rdm1_test y2 = x2.flatten() print("rdm1", y2) print(type(y2)) y2 = np.sort(y2) plt.plot(y2, 'b', label='rdm1 for dfmp2') plt.ylabel('rdm1 sorted values') # Place a legend above this subplot, expanding itself to # fully use the given bounding box. plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.) plt.show() plt.close() print("deviations between sorted 1rdm in MO basis ") print(np.abs(y1-y2).max()) # Plot sorted rdm2 values x1 = rdm2 y1 = x1.flatten() y1 = np.sort(y1) import matplotlib.pyplot as plt plt.plot(y1, 'r', label='rdm2 from dmet') plt.ylabel('rdm2') x2 = rdm2_test y2 = x2.flatten() print("rdm1", y2) print(type(y2)) y2 = np.sort(y2) plt.plot(y2, 'b', label='rdm2 for dfmp2') plt.ylabel('rdm1 sorted values') # Place a legend above this subplot, expanding itself to # fully use the given bounding box. plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.) plt.show() plt.close() print("deviations between sorted 1rdm in MO basis ") print(np.abs(y1-y2).max()) print("deviations between 1rdm,2rdm in MO basis ") print(np.abs(rdm1-rdm1_test).max()) print(np.abs(rdm2-rdm2_test).max()) # # ---------------------------------- # transform rdm's to original basis tei = ao2mo.restore(1, intsp_df, cfx.shape[1]) print("tei shape", tei.shape) rdm1 = np.dot(cf, np.dot(rdm1, cf.T)) rdm2 = np.einsum('ai,ijkl->ajkl', cf, rdm2) rdm2 = np.einsum('bj,ajkl->abkl', cf, rdm2) rdm2 = np.einsum('ck,abkl->abcl', cf, rdm2) rdm2 = np.einsum('dl,abcl->abcd', cf, rdm2) ImpEnergy = +0.25 *np.einsum('ij,jk,ki->', 2*Hp+jkp, rdm1, Xp) \ +0.25 *np.einsum('ij,jk,ki->', 2*Hp+jkp, Xp, rdm1) \ +0.125*np.einsum('ijkl,ijkm,ml->', tei, rdm2, Xp) \ +0.125*np.einsum('ijkl,ijml,mk->', tei, rdm2, Xp) \ +0.125*np.einsum('ijkl,imkl,mj->', tei, rdm2, Xp) \ +0.125*np.einsum('ijkl,mjkl,mi->', tei, rdm2, Xp) Nel = np.trace(np.dot(np.dot(rdm1, Sp), Xp)) return Nel, ImpEnergy