def make_kpt(kpt): # kpt = kptj - kpti # search for all possible ki and kj that has ki-kj+kpt=0 kk_match = numpy.einsum('ijx->ij', abs(kk_table + kpt)) < 1e-9 kpti_idx, kptj_idx = numpy.where(kk_todo & kk_match) nkptj = len(kptj_idx) log.debug1('kpt = %s', kpt) log.debug2('kpti_idx = %s', kpti_idx) log.debug2('kptj_idx = %s', kptj_idx) kk_todo[kpti_idx,kptj_idx] = False if swap_2e and not is_zero(kpt): kk_todo[kptj_idx,kpti_idx] = False max_memory1 = max_memory * (nkptj+1)/(nkptj+5) blksize = max(int(max_memory1*4e6/(nkptj+5)/16/nao**2), 16) bufR = numpy.empty((blksize*nao**2)) bufI = numpy.empty((blksize*nao**2)) # Use DF object to mimic KRHF/KUHF object in function get_coulG mydf.exxdiv = exxdiv vkcoulG = mydf.weighted_coulG(kpt, True, mydf.gs) kptjs = kpts[kptj_idx] # <r|-G+k_rs|s> = conj(<s|G-k_rs|r>) = conj(<s|G+k_sr|r>) for k, pqkR, pqkI, p0, p1 \ in mydf.ft_loop(mydf.gs, kpt, kptjs, max_memory=max_memory1): ki = kpti_idx[k] kj = kptj_idx[k] coulG = numpy.sqrt(vkcoulG[p0:p1]) # case 1: k_pq = (pi|iq) #:v4 = numpy.einsum('ijL,lkL->ijkl', pqk, pqk.conj()) #:vk += numpy.einsum('ijkl,jk->il', v4, dm) pqkR *= coulG pqkI *= coulG pLqR = lib.transpose(pqkR.reshape(nao,nao,-1), axes=(0,2,1), out=bufR) pLqI = lib.transpose(pqkI.reshape(nao,nao,-1), axes=(0,2,1), out=bufI) iLkR = numpy.empty((nao*(p1-p0),nao)) iLkI = numpy.empty((nao*(p1-p0),nao)) for i in range(nset): iLkR, iLkI = zdotNN(pLqR.reshape(-1,nao), pLqI.reshape(-1,nao), dmsR[i,kj], dmsI[i,kj], 1, iLkR, iLkI) zdotNC(iLkR.reshape(nao,-1), iLkI.reshape(nao,-1), pLqR.reshape(nao,-1).T, pLqI.reshape(nao,-1).T, 1, vkR[i,ki], vkI[i,ki], 1) # case 2: k_pq = (iq|pi) #:v4 = numpy.einsum('iLj,lLk->ijkl', pqk, pqk.conj()) #:vk += numpy.einsum('ijkl,li->kj', v4, dm) if swap_2e and not is_zero(kpt): iLkR = iLkR.reshape(nao,-1) iLkI = iLkI.reshape(nao,-1) for i in range(nset): iLkR, iLkI = zdotNN(dmsR[i,ki], dmsI[i,ki], pLqR.reshape(nao,-1), pLqI.reshape(nao,-1), 1, iLkR, iLkI) zdotCN(pLqR.reshape(-1,nao).T, pLqI.reshape(-1,nao).T, iLkR.reshape(-1,nao), iLkI.reshape(-1,nao), 1, vkR[i,kj], vkI[i,kj], 1) pqkR = pqkI = coulG = pLqR = pLqI = iLkR = iLkI = None
def sr_loop(self, kpti_kptj=numpy.zeros((2, 3)), max_memory=2000, compact=True, blksize=None): '''Short range part''' kpti, kptj = kpti_kptj unpack = is_zero(kpti - kptj) and not compact is_real = is_zero(kpti_kptj) nao = self.cell.nao_nr() if blksize is None: if is_real: if unpack: blksize = max_memory * 1e6 / 8 / (nao * (nao + 1) // 2 + nao**2) else: blksize = max_memory * 1e6 / 8 / (nao * (nao + 1)) else: blksize = max_memory * 1e6 / 16 / (nao**2 * 2) blksize = max(16, min(int(blksize), self.blockdim)) logger.debug3(self, 'max_memory %d MB, blksize %d', max_memory, blksize) if unpack: buf = numpy.empty((blksize, nao * (nao + 1) // 2)) def load(Lpq, b0, b1, bufR, bufI): Lpq = numpy.asarray(Lpq[b0:b1]) if is_real: if unpack: LpqR = lib.unpack_tril(Lpq, out=bufR).reshape(-1, nao**2) else: LpqR = Lpq LpqI = numpy.zeros_like(LpqR) else: shape = Lpq.shape if unpack: tmp = numpy.ndarray(shape, buffer=buf) tmp[:] = Lpq.real LpqR = lib.unpack_tril(tmp, out=bufR).reshape(-1, nao**2) tmp[:] = Lpq.imag LpqI = lib.unpack_tril(tmp, lib.ANTIHERMI, out=bufI).reshape(-1, nao**2) else: LpqR = numpy.ndarray(shape, buffer=bufR) LpqR[:] = Lpq.real LpqI = numpy.ndarray(shape, buffer=bufI) LpqI[:] = Lpq.imag return LpqR, LpqI LpqR = LpqI = None with _load3c(self._cderi, 'j3c', kpti_kptj) as j3c: naux = j3c.shape[0] for b0, b1 in lib.prange(0, naux, blksize): LpqR, LpqI = load(j3c, b0, b1, LpqR, LpqI) yield LpqR, LpqI
def sr_loop(self, kpti_kptj=numpy.zeros((2,3)), max_memory=2000, compact=True, blksize=None): '''Short range part''' kpti, kptj = kpti_kptj unpack = is_zero(kpti-kptj) and not compact is_real = is_zero(kpti_kptj) nao = self.cell.nao_nr() if blksize is None: if is_real: if unpack: blksize = max_memory*1e6/8/(nao*(nao+1)//2+nao**2*2) else: blksize = max_memory*1e6/8/(nao*(nao+1)*2) else: blksize = max_memory*1e6/16/(nao**2*3) blksize = max(16, min(int(blksize), self.blockdim)) logger.debug2(self, 'max_memory %d MB, blksize %d', max_memory, blksize) if unpack: buf = numpy.empty((blksize,nao*(nao+1)//2)) def load(Lpq, b0, b1, bufR, bufI): Lpq = numpy.asarray(Lpq[b0:b1]) if is_real: if unpack: LpqR = lib.unpack_tril(Lpq, out=bufR).reshape(-1,nao**2) else: LpqR = Lpq LpqI = numpy.zeros_like(LpqR) else: shape = Lpq.shape if unpack: tmp = numpy.ndarray(shape, buffer=buf) tmp[:] = Lpq.real LpqR = lib.unpack_tril(tmp, out=bufR).reshape(-1,nao**2) tmp[:] = Lpq.imag LpqI = lib.unpack_tril(tmp, lib.ANTIHERMI, out=bufI).reshape(-1,nao**2) else: LpqR = numpy.ndarray(shape, buffer=bufR) LpqR[:] = Lpq.real LpqI = numpy.ndarray(shape, buffer=bufI) LpqI[:] = Lpq.imag return LpqR, LpqI LpqR = LpqI = j3cR = j3cI = None with self.load_Lpq(kpti_kptj) as Lpq: naux = Lpq.shape[0] with self.load_j3c(kpti_kptj) as j3c: for b0, b1 in lib.prange(0, naux, blksize): LpqR, LpqI = load(Lpq, b0, b1, LpqR, LpqI) j3cR, j3cI = load(j3c, b0, b1, j3cR, j3cI) yield LpqR, LpqI, j3cR, j3cI
def load_Lpq(self, kpti_kptj=numpy.zeros((2,3))): with h5py.File(self._cderi, 'r') as f: if self.approx_sr_level == 0: return _load3c(self._cderi, 'Lpq', kpti_kptj) else: kpti, kptj = kpti_kptj if is_zero(kpti-kptj): return pyscf.df.addons.load(self._cderi, 'Lpq/0') else: # See _fake_Lpq_kpts return pyscf.df.addons.load(self._cderi, 'Lpq/1')
def get_k_kpts(mydf, dm_kpts, hermi=1, kpts=numpy.zeros((1,3)), kpts_band=None, exxdiv=None): mydf = _sync_mydf(mydf) cell = mydf.cell mesh = mydf.mesh coords = cell.gen_uniform_grids(mesh) ngrids = coords.shape[0] if hasattr(dm_kpts, 'mo_coeff'): if dm_kpts.ndim == 3: # KRHF mo_coeff = [dm_kpts.mo_coeff] mo_occ = [dm_kpts.mo_occ ] else: # KUHF mo_coeff = dm_kpts.mo_coeff mo_occ = dm_kpts.mo_occ elif hasattr(dm_kpts[0], 'mo_coeff'): mo_coeff = [dm.mo_coeff for dm in dm_kpts] mo_occ = [dm.mo_occ for dm in dm_kpts] else: mo_coeff = None kpts = numpy.asarray(kpts) dm_kpts = lib.asarray(dm_kpts, order='C') dms = _format_dms(dm_kpts, kpts) nset, nkpts, nao = dms.shape[:3] weight = 1./nkpts * (cell.vol/ngrids) kpts_band, input_band = _format_kpts_band(kpts_band, kpts), kpts_band nband = len(kpts_band) if gamma_point(kpts_band) and gamma_point(kpts): vk_kpts = numpy.zeros((nset,nband,nao,nao), dtype=dms.dtype) else: vk_kpts = numpy.zeros((nset,nband,nao,nao), dtype=numpy.complex128) coords = mydf.grids.coords ao2_kpts = [numpy.asarray(ao.T, order='C') for ao in mydf._numint.eval_ao(cell, coords, kpts=kpts)] if input_band is None: ao1_kpts = ao2_kpts else: ao1_kpts = [numpy.asarray(ao.T, order='C') for ao in mydf._numint.eval_ao(cell, coords, kpts=kpts_band)] mem_now = lib.current_memory()[0] max_memory = mydf.max_memory - mem_now blksize = int(min(nao, max(1, (max_memory-mem_now)*1e6/16/4/ngrids/nao))) lib.logger.debug1(mydf, 'max_memory %s blksize %d', max_memory, blksize) ao1_dtype = numpy.result_type(*ao1_kpts) ao2_dtype = numpy.result_type(*ao2_kpts) vR_dm = numpy.empty((nset,nao,ngrids), dtype=vk_kpts.dtype) ao_dms_buf = [None] * nkpts tasks = [(k1,k2) for k2 in range(nkpts) for k1 in range(nband)] for k1, k2 in mpi.static_partition(tasks): ao1T = ao1_kpts[k1] ao2T = ao2_kpts[k2] kpt1 = kpts_band[k1] kpt2 = kpts[k2] if ao2T.size == 0 or ao1T.size == 0: continue # If we have an ewald exxdiv, we add the G=0 correction near the # end of the function to bypass any discretization errors # that arise from the FFT. mydf.exxdiv = exxdiv if exxdiv == 'ewald' or exxdiv is None: coulG = tools.get_coulG(cell, kpt2-kpt1, False, mydf, mesh) else: coulG = tools.get_coulG(cell, kpt2-kpt1, True, mydf, mesh) if is_zero(kpt1-kpt2): expmikr = numpy.array(1.) else: expmikr = numpy.exp(-1j * numpy.dot(coords, kpt2-kpt1)) if ao_dms_buf[k2] is None: if mo_coeff is None: ao_dms = [lib.dot(dm[k2], ao2T.conj()) for dm in dms] else: ao_dms = [] for i, dm in enumerate(dms): occ = mo_occ[i][k2] mo_scaled = mo_coeff[i][k2][:,occ>0] * numpy.sqrt(occ[occ>0]) ao_dms.append(lib.dot(mo_scaled.T, ao2T).conj()) ao_dms_buf[k2] = ao_dms else: ao_dms = ao_dms_buf[k2] if mo_coeff is None: for p0, p1 in lib.prange(0, nao, blksize): rho1 = numpy.einsum('ig,jg->ijg', ao1T[p0:p1].conj()*expmikr, ao2T) vG = tools.fft(rho1.reshape(-1,ngrids), mesh) rho1 = None vG *= coulG vR = tools.ifft(vG, mesh).reshape(p1-p0,nao,ngrids) vG = None if vR_dm.dtype == numpy.double: vR = vR.real for i in range(nset): numpy.einsum('ijg,jg->ig', vR, ao_dms[i], out=vR_dm[i,p0:p1]) vR = None else: for p0, p1 in lib.prange(0, nao, blksize): for i in range(nset): rho1 = numpy.einsum('ig,jg->ijg', ao1T[p0:p1].conj()*expmikr, ao_dms[i].conj()) vG = tools.fft(rho1.reshape(-1,ngrids), mesh) rho1 = None vG *= coulG vR = tools.ifft(vG, mesh).reshape(p1-p0,-1,ngrids) vG = None if vR_dm.dtype == numpy.double: vR = vR.real numpy.einsum('ijg,jg->ig', vR, ao_dms[i], out=vR_dm[i,p0:p1]) vR = None vR_dm *= expmikr.conj() for i in range(nset): vk_kpts[i,k1] += weight * lib.dot(vR_dm[i], ao1T.T) vk_kpts = mpi.reduce(lib.asarray(vk_kpts)) if gamma_point(kpts_band) and gamma_point(kpts): vk_kpts = vk_kpts.real if rank == 0: if exxdiv == 'ewald': _ewald_exxdiv_for_G0(cell, kpts, dms, vk_kpts, kpts_band=kpts_band) return _format_jks(vk_kpts, dm_kpts, input_band, kpts)
def make_kpt(uniq_kptji_id): # kpt = kptj - kpti kpt = uniq_kpts[uniq_kptji_id] log.debug1('kpt = %s', kpt) adapted_ji_idx = numpy.where(uniq_inverse == uniq_kptji_id)[0] adapted_kptjs = kptjs[adapted_ji_idx] nkptj = len(adapted_kptjs) log.debug1('adapted_ji_idx = %s', adapted_ji_idx) kLR = kLRs[uniq_kptji_id] kLI = kLIs[uniq_kptji_id] if is_zero(kpt): # kpti == kptj aosym = 's2' nao_pair = nao * (nao + 1) // 2 vbar = fuse(mydf.auxbar(fused_cell)) ovlp = cell.pbc_intor('cint1e_ovlp_sph', hermi=1, kpts=adapted_kptjs) for k, ji in enumerate(adapted_ji_idx): ovlp[k] = lib.pack_tril(ovlp[k]) else: aosym = 's1' nao_pair = nao**2 mem_now = lib.current_memory()[0] log.debug2('memory = %s', mem_now) max_memory = max(2000, mydf.max_memory - mem_now) # nkptj for 3c-coulomb arrays plus 1 Lpq array buflen = min( max(int(max_memory * .6 * 1e6 / 16 / naux / (nkptj + 1)), 1), nao_pair) shranges = _guess_shell_ranges(cell, buflen, aosym) buflen = max([x[2] for x in shranges]) # +1 for a pqkbuf if aosym == 's2': Gblksize = max( 16, int(max_memory * .2 * 1e6 / 16 / buflen / (nkptj + 1))) else: Gblksize = max( 16, int(max_memory * .4 * 1e6 / 16 / buflen / (nkptj + 1))) Gblksize = min(Gblksize, ngs, 16384) pqkRbuf = numpy.empty(buflen * Gblksize) pqkIbuf = numpy.empty(buflen * Gblksize) # buf for ft_aopair buf = numpy.zeros((nkptj, buflen * Gblksize), dtype=numpy.complex128) col1 = 0 for istep, sh_range in enumerate(shranges): log.debug1('int3c2e [%d/%d], AO [%d:%d], ncol = %d', \ istep+1, len(shranges), *sh_range) bstart, bend, ncol = sh_range col0, col1 = col1, col1 + ncol j3cR = [] j3cI = [] for k, idx in enumerate(adapted_ji_idx): v = numpy.asarray(feri['j3c/%d' % idx][:, col0:col1]) if is_zero(kpt): for i, c in enumerate(vbar): if c != 0: v[i] -= c * ovlp[k][col0:col1] j3cR.append(numpy.asarray(v.real, order='C')) if is_zero(kpt) and gamma_point(adapted_kptjs[k]): j3cI.append(None) else: j3cI.append(numpy.asarray(v.imag, order='C')) v = None if aosym == 's2': shls_slice = (bstart, bend, 0, bend) for p0, p1 in lib.prange(0, ngs, Gblksize): ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, kpt, adapted_kptjs, out=buf) nG = p1 - p0 for k, ji in enumerate(adapted_ji_idx): aoao = numpy.ndarray((nG, ncol), dtype=numpy.complex128, order='F', buffer=buf[k]) pqkR = numpy.ndarray((ncol, nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ncol, nG), buffer=pqkIbuf) pqkR[:] = aoao.real.T pqkI[:] = aoao.imag.T aoao[:] = 0 lib.dot(kLR[p0:p1].T, pqkR.T, -1, j3cR[k][naux:], 1) lib.dot(kLI[p0:p1].T, pqkI.T, -1, j3cR[k][naux:], 1) if not (is_zero(kpt) and gamma_point(adapted_kptjs[k])): lib.dot(kLR[p0:p1].T, pqkI.T, -1, j3cI[k][naux:], 1) lib.dot(kLI[p0:p1].T, pqkR.T, 1, j3cI[k][naux:], 1) else: shls_slice = (bstart, bend, 0, cell.nbas) ni = ncol // nao for p0, p1 in lib.prange(0, ngs, Gblksize): ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, kpt, adapted_kptjs, out=buf) nG = p1 - p0 for k, ji in enumerate(adapted_ji_idx): aoao = numpy.ndarray((nG, ni, nao), dtype=numpy.complex128, order='F', buffer=buf[k]) pqkR = numpy.ndarray((ni, nao, nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ni, nao, nG), buffer=pqkIbuf) pqkR[:] = aoao.real.transpose(1, 2, 0) pqkI[:] = aoao.imag.transpose(1, 2, 0) aoao[:] = 0 pqkR = pqkR.reshape(-1, nG) pqkI = pqkI.reshape(-1, nG) zdotCN(kLR[p0:p1].T, kLI[p0:p1].T, pqkR.T, pqkI.T, -1, j3cR[k][naux:], j3cI[k][naux:], 1) naux0 = nauxs[uniq_kptji_id] for k, ji in enumerate(adapted_ji_idx): if is_zero(kpt) and gamma_point(adapted_kptjs[k]): v = fuse(j3cR[k]) else: v = fuse(j3cR[k] + j3cI[k] * 1j) if j2c[uniq_kptji_id][0] == 'CD': v = scipy.linalg.solve_triangular(j2c[uniq_kptji_id][1], v, lower=True, overwrite_b=True) else: v = lib.dot(j2c[uniq_kptji_id][1], v) feri['j3c/%d' % ji][:naux0, col0:col1] = v naux0 = nauxs[uniq_kptji_id] for k, ji in enumerate(adapted_ji_idx): v = feri['j3c/%d' % ji][:naux0] del (feri['j3c/%d' % ji]) feri['j3c/%d' % ji] = v
def _make_j3c(mydf, cell, auxcell, kptij_lst): t1 = (time.clock(), time.time()) log = logger.Logger(mydf.stdout, mydf.verbose) max_memory = max(2000, mydf.max_memory - lib.current_memory()[0]) fused_cell, fuse = fuse_auxcell(mydf, auxcell) outcore.aux_e2(cell, fused_cell, mydf._cderi, 'cint3c2e_sph', kptij_lst=kptij_lst, dataname='j3c', max_memory=max_memory) t1 = log.timer_debug1('3c2e', *t1) nao = cell.nao_nr() naux = auxcell.nao_nr() gs = mydf.gs Gv, Gvbase, kws = cell.get_Gv_weights(gs) b = cell.reciprocal_vectors() gxyz = lib.cartesian_prod([numpy.arange(len(x)) for x in Gvbase]) ngs = gxyz.shape[0] kptis = kptij_lst[:, 0] kptjs = kptij_lst[:, 1] kpt_ji = kptjs - kptis uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji) # j2c ~ (-kpt_ji | kpt_ji) j2c = fused_cell.pbc_intor('cint2c2e_sph', hermi=1, kpts=uniq_kpts) kLRs = [] kLIs = [] # An alternative method to evalute j2c. This method might have larger numerical error? # chgcell = make_modchg_basis(auxcell, mydf.eta) # for k, kpt in enumerate(uniq_kpts): # aoaux = ft_ao.ft_ao(chgcell, Gv, None, b, gxyz, Gvbase, kpt).T # coulG = numpy.sqrt(mydf.weighted_coulG(kpt, False, gs)) # LkR = aoaux.real * coulG # LkI = aoaux.imag * coulG # j2caux = numpy.zeros_like(j2c[k]) # j2caux[naux:,naux:] = j2c[k][naux:,naux:] # if is_zero(kpt): # kpti == kptj # j2caux[naux:,naux:] -= lib.ddot(LkR, LkR.T) # j2caux[naux:,naux:] -= lib.ddot(LkI, LkI.T) # j2c[k] = j2c[k][:naux,:naux] - fuse(fuse(j2caux.T).T) # vbar = fuse(mydf.auxbar(fused_cell)) # s = (vbar != 0).astype(numpy.double) # j2c[k] -= numpy.einsum('i,j->ij', vbar, s) # j2c[k] -= numpy.einsum('i,j->ij', s, vbar) # else: # j2cR, j2cI = zdotCN(LkR, LkI, LkR.T, LkI.T) # j2caux[naux:,naux:] -= j2cR + j2cI * 1j # j2c[k] = j2c[k][:naux,:naux] - fuse(fuse(j2caux.T).T) # # try: # j2c[k] = scipy.linalg.cholesky(j2c[k], lower=True) # except scipy.linalg.LinAlgError as e: # msg =('===================================\n' # 'J-metric not positive definite.\n' # 'It is likely that gs is not enough.\n' # '===================================') # log.error(msg) # raise scipy.linalg.LinAlgError('\n'.join([e.message, msg])) # kLR = LkR.T # kLI = LkI.T # if not kLR.flags.c_contiguous: kLR = lib.transpose(LkR) # if not kLI.flags.c_contiguous: kLI = lib.transpose(LkI) # kLR *= coulG.reshape(-1,1) # kLI *= coulG.reshape(-1,1) # kLRs.append(kLR) # kLIs.append(kLI) # aoaux = LkR = LkI = kLR = kLI = coulG = None for k, kpt in enumerate(uniq_kpts): aoaux = ft_ao.ft_ao(fused_cell, Gv, None, b, gxyz, Gvbase, kpt).T coulG = numpy.sqrt(mydf.weighted_coulG(kpt, False, gs)) LkR = aoaux.real * coulG LkI = aoaux.imag * coulG if is_zero(kpt): # kpti == kptj j2c[k][naux:] -= lib.ddot(LkR[naux:], LkR.T) j2c[k][naux:] -= lib.ddot(LkI[naux:], LkI.T) j2c[k][:naux, naux:] = j2c[k][naux:, :naux].T else: j2cR, j2cI = zdotCN(LkR[naux:], LkI[naux:], LkR.T, LkI.T) j2c[k][naux:] -= j2cR + j2cI * 1j j2c[k][:naux, naux:] = j2c[k][naux:, :naux].T.conj() j2c[k] = fuse(fuse(j2c[k]).T).T try: j2c[k] = ('CD', scipy.linalg.cholesky(j2c[k], lower=True)) except scipy.linalg.LinAlgError as e: #msg =('===================================\n' # 'J-metric not positive definite.\n' # 'It is likely that gs is not enough.\n' # '===================================') #log.error(msg) #raise scipy.linalg.LinAlgError('\n'.join([e.message, msg])) w, v = scipy.linalg.eigh(j2c[k]) log.debug2('metric linear dependency for kpt %s', k) log.debug2('cond = %.4g, drop %d bfns', w[0] / w[-1], numpy.count_nonzero(w < LINEAR_DEP_THR)) v = v[:, w > LINEAR_DEP_THR].T.conj() v /= numpy.sqrt(w[w > LINEAR_DEP_THR]).reshape(-1, 1) j2c[k] = ('eig', v) kLR = LkR[naux:].T kLI = LkI[naux:].T if not kLR.flags.c_contiguous: kLR = lib.transpose(LkR[naux:]) if not kLI.flags.c_contiguous: kLI = lib.transpose(LkI[naux:]) kLR *= coulG.reshape(-1, 1) kLI *= coulG.reshape(-1, 1) kLRs.append(kLR) kLIs.append(kLI) aoaux = LkR = LkI = kLR = kLI = coulG = None nauxs = [v[1].shape[0] for v in j2c] feri = h5py.File(mydf._cderi) def make_kpt(uniq_kptji_id): # kpt = kptj - kpti kpt = uniq_kpts[uniq_kptji_id] log.debug1('kpt = %s', kpt) adapted_ji_idx = numpy.where(uniq_inverse == uniq_kptji_id)[0] adapted_kptjs = kptjs[adapted_ji_idx] nkptj = len(adapted_kptjs) log.debug1('adapted_ji_idx = %s', adapted_ji_idx) kLR = kLRs[uniq_kptji_id] kLI = kLIs[uniq_kptji_id] if is_zero(kpt): # kpti == kptj aosym = 's2' nao_pair = nao * (nao + 1) // 2 vbar = fuse(mydf.auxbar(fused_cell)) ovlp = cell.pbc_intor('cint1e_ovlp_sph', hermi=1, kpts=adapted_kptjs) for k, ji in enumerate(adapted_ji_idx): ovlp[k] = lib.pack_tril(ovlp[k]) else: aosym = 's1' nao_pair = nao**2 mem_now = lib.current_memory()[0] log.debug2('memory = %s', mem_now) max_memory = max(2000, mydf.max_memory - mem_now) # nkptj for 3c-coulomb arrays plus 1 Lpq array buflen = min( max(int(max_memory * .6 * 1e6 / 16 / naux / (nkptj + 1)), 1), nao_pair) shranges = _guess_shell_ranges(cell, buflen, aosym) buflen = max([x[2] for x in shranges]) # +1 for a pqkbuf if aosym == 's2': Gblksize = max( 16, int(max_memory * .2 * 1e6 / 16 / buflen / (nkptj + 1))) else: Gblksize = max( 16, int(max_memory * .4 * 1e6 / 16 / buflen / (nkptj + 1))) Gblksize = min(Gblksize, ngs, 16384) pqkRbuf = numpy.empty(buflen * Gblksize) pqkIbuf = numpy.empty(buflen * Gblksize) # buf for ft_aopair buf = numpy.zeros((nkptj, buflen * Gblksize), dtype=numpy.complex128) col1 = 0 for istep, sh_range in enumerate(shranges): log.debug1('int3c2e [%d/%d], AO [%d:%d], ncol = %d', \ istep+1, len(shranges), *sh_range) bstart, bend, ncol = sh_range col0, col1 = col1, col1 + ncol j3cR = [] j3cI = [] for k, idx in enumerate(adapted_ji_idx): v = numpy.asarray(feri['j3c/%d' % idx][:, col0:col1]) if is_zero(kpt): for i, c in enumerate(vbar): if c != 0: v[i] -= c * ovlp[k][col0:col1] j3cR.append(numpy.asarray(v.real, order='C')) if is_zero(kpt) and gamma_point(adapted_kptjs[k]): j3cI.append(None) else: j3cI.append(numpy.asarray(v.imag, order='C')) v = None if aosym == 's2': shls_slice = (bstart, bend, 0, bend) for p0, p1 in lib.prange(0, ngs, Gblksize): ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, kpt, adapted_kptjs, out=buf) nG = p1 - p0 for k, ji in enumerate(adapted_ji_idx): aoao = numpy.ndarray((nG, ncol), dtype=numpy.complex128, order='F', buffer=buf[k]) pqkR = numpy.ndarray((ncol, nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ncol, nG), buffer=pqkIbuf) pqkR[:] = aoao.real.T pqkI[:] = aoao.imag.T aoao[:] = 0 lib.dot(kLR[p0:p1].T, pqkR.T, -1, j3cR[k][naux:], 1) lib.dot(kLI[p0:p1].T, pqkI.T, -1, j3cR[k][naux:], 1) if not (is_zero(kpt) and gamma_point(adapted_kptjs[k])): lib.dot(kLR[p0:p1].T, pqkI.T, -1, j3cI[k][naux:], 1) lib.dot(kLI[p0:p1].T, pqkR.T, 1, j3cI[k][naux:], 1) else: shls_slice = (bstart, bend, 0, cell.nbas) ni = ncol // nao for p0, p1 in lib.prange(0, ngs, Gblksize): ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, kpt, adapted_kptjs, out=buf) nG = p1 - p0 for k, ji in enumerate(adapted_ji_idx): aoao = numpy.ndarray((nG, ni, nao), dtype=numpy.complex128, order='F', buffer=buf[k]) pqkR = numpy.ndarray((ni, nao, nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ni, nao, nG), buffer=pqkIbuf) pqkR[:] = aoao.real.transpose(1, 2, 0) pqkI[:] = aoao.imag.transpose(1, 2, 0) aoao[:] = 0 pqkR = pqkR.reshape(-1, nG) pqkI = pqkI.reshape(-1, nG) zdotCN(kLR[p0:p1].T, kLI[p0:p1].T, pqkR.T, pqkI.T, -1, j3cR[k][naux:], j3cI[k][naux:], 1) naux0 = nauxs[uniq_kptji_id] for k, ji in enumerate(adapted_ji_idx): if is_zero(kpt) and gamma_point(adapted_kptjs[k]): v = fuse(j3cR[k]) else: v = fuse(j3cR[k] + j3cI[k] * 1j) if j2c[uniq_kptji_id][0] == 'CD': v = scipy.linalg.solve_triangular(j2c[uniq_kptji_id][1], v, lower=True, overwrite_b=True) else: v = lib.dot(j2c[uniq_kptji_id][1], v) feri['j3c/%d' % ji][:naux0, col0:col1] = v naux0 = nauxs[uniq_kptji_id] for k, ji in enumerate(adapted_ji_idx): v = feri['j3c/%d' % ji][:naux0] del (feri['j3c/%d' % ji]) feri['j3c/%d' % ji] = v for k, kpt in enumerate(uniq_kpts): make_kpt(k) feri.close()
def build_Lpq_pbc(mydf, auxcell, kptij_lst): '''Fitting coefficients for auxiliary functions''' kptis = kptij_lst[:,0] kptjs = kptij_lst[:,1] kpts_ji = kptjs - kptis uniq_kpts, uniq_index, uniq_inverse = unique(kpts_ji) max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0])) if mydf.metric.upper() == 'S': outcore.aux_e2(mydf.cell, auxcell, mydf._cderi, 'cint3c1e_sph', kptij_lst=kptij_lst, dataname='Lpq', max_memory=max_memory) s_aux = auxcell.pbc_intor('cint1e_ovlp_sph', hermi=1, kpts=uniq_kpts) elif mydf.metric.upper() == 'T': outcore.aux_e2(mydf.cell, auxcell, mydf._cderi, 'cint3c1e_p2_sph', kptij_lst=kptij_lst, dataname='Lpq', max_memory=max_memory) s_aux = [x*2 for x in auxcell.pbc_intor('cint1e_kin_sph', hermi=1, kpts=uniq_kpts)] elif mydf.metric.upper() == 'J': fused_cell, fuse = fuse_auxcell(mydf, auxcell) outcore.aux_e2(mydf.cell, fused_cell, mydf._cderi, 'cint3c2e_sph', kptij_lst=kptij_lst, dataname='j3c', max_memory=max_memory) vbar = fuse(mydf.auxbar(fused_cell)) with h5py.File(mydf._cderi) as f: f['Lpq-kptij'] = kptij_lst for k_uniq, kpt_uniq in enumerate(uniq_kpts): adapted_ji_idx = numpy.where(uniq_inverse == k_uniq)[0] adapted_kptjs = kptjs[adapted_ji_idx] if is_zero(kpt_uniq): ovlp = mydf.cell.pbc_intor('cint1e_ovlp_sph', hermi=1, kpts=adapted_kptjs) for k, ji in enumerate(adapted_ji_idx): ovlp[k] = lib.pack_tril(ovlp[k]) for k, idx in enumerate(adapted_ji_idx): v = fuse(numpy.asarray(f['j3c/%d'%idx])) if is_zero(kpt_uniq): for i, c in enumerate(vbar): if c != 0: v[i] -= c * ovlp[k] f['Lpq/%d'%idx] = v v = ovlp = vbar = None j2c = fused_cell.pbc_intor('cint2c2e_sph', hermi=1, kpts=uniq_kpts) for k, kpt in enumerate(uniq_kpts): j2c[k] = fuse(fuse(j2c[k]).T).T.copy() s_aux = j2c # else: # T+S # outcore.aux_e2(mydf.cell, auxcell, mydf._cderi, 'cint3c1e_sph', # kptij_lst=kptij_lst, dataname='Lpq_s', # max_memory=max_memory) # outcore.aux_e2(mydf.cell, auxcell, mydf._cderi, 'cint3c1e_p2_sph', # kptij_lst=kptij_lst, dataname='Lpq', # max_memory=max_memory) # with h5py.File(mydf._cderi) as f: # for k in range(len(kptij_lst)): # f['Lpq/%d'%k][:] = f['Lpq/%d'%k].value + f['Lpq_s/%d'%k].value # del(f['Lpq_s/%d'%k]) # s_aux = auxcell.pbc_intor('cint1e_ovlp_sph', hermi=1, kpts=uniq_kpts) # s_aux = [x+y*2 for x,y in zip(s_aux, auxcell.pbc_intor('cint1e_kin_sph', hermi=1, kpts=uniq_kpts))] try: s_aux = [scipy.linalg.cho_factor(x) for x in s_aux] except scipy.linalg.LinAlgError: eigs = [scipy.linalg.eigh(x)[0] for x in s_aux] conds = [x[-1]/max(1e-16, x[0]) for x in eigs] n = eigs[0].size shift = [0] * len(s_aux) for i, x in enumerate(s_aux): if conds[i] > 1e15: shift[i] = max(abs(eigs[i][0])*2, eigs[i][-1]*1e-18) x += numpy.eye(n) * shift[i] logger.warn(mydf, 'Ill condition number %s found in metric %s.\n' 'Level shift %s is applied.', conds, mydf.metric, shift) s_aux = [scipy.linalg.cho_factor(x) for x in s_aux] max_memory = mydf.max_memory - lib.current_memory()[0] naux = auxcell.nao_nr() blksize = max(int(max_memory*.5*1e6/16/naux/mydf.blockdim), 1) * mydf.blockdim with h5py.File(mydf._cderi) as feri: for k, where in enumerate(uniq_inverse): s_k = s_aux[where] key = 'Lpq/%d' % k Lpq = feri[key] nao_pair = Lpq.shape[1] for p0, p1 in lib.prange(0, nao_pair, blksize): Lpq[:,p0:p1] = scipy.linalg.cho_solve(s_k, Lpq[:,p0:p1])
def ft_fuse(job_id, uniq_kptji_id, sh0, sh1): kpt = uniq_kpts[uniq_kptji_id] # kpt = kptj - kpti adapted_ji_idx = numpy.where(uniq_inverse == uniq_kptji_id)[0] adapted_kptjs = kptjs[adapted_ji_idx] nkptj = len(adapted_kptjs) j2c = numpy.asarray(fswap['j2c/%d' % uniq_kptji_id]) j2ctag = j2ctags[uniq_kptji_id] naux0 = j2c.shape[0] if ('j2c-/%d' % uniq_kptji_id) in fswap: j2c_negative = numpy.asarray(fswap['j2c-/%d' % uniq_kptji_id]) else: j2c_negative = None if is_zero(kpt): aosym = 's2' else: aosym = 's1' if aosym == 's2' and cell.dimension == 3: vbar = fuse(mydf.auxbar(fused_cell)) ovlp = cell.pbc_intor('int1e_ovlp', hermi=1, kpts=adapted_kptjs) ovlp = [lib.pack_tril(s) for s in ovlp] j3cR = [None] * nkptj j3cI = [None] * nkptj i0 = ao_loc[sh0] i1 = ao_loc[sh1] for k, idx in enumerate(adapted_ji_idx): key = 'j3c-chunks/%d/%d' % (job_id, idx) v = numpy.asarray(fswap[key]) if aosym == 's2' and cell.dimension == 3: for i in numpy.where(vbar != 0)[0]: v[i] -= vbar[i] * ovlp[k][i0 * (i0 + 1) // 2:i1 * (i1 + 1) // 2].ravel() j3cR[k] = numpy.asarray(v.real, order='C') if v.dtype == numpy.complex128: j3cI[k] = numpy.asarray(v.imag, order='C') v = None ncol = j3cR[0].shape[1] Gblksize = max(16, int(max_memory * 1e6 / 16 / ncol / (nkptj + 1))) # +1 for pqkRbuf/pqkIbuf Gblksize = min(Gblksize, ngrids, 16384) pqkRbuf = numpy.empty(ncol * Gblksize) pqkIbuf = numpy.empty(ncol * Gblksize) buf = numpy.empty(nkptj * ncol * Gblksize, dtype=numpy.complex128) log.alldebug2('job_id %d blksize (%d,%d)', job_id, Gblksize, ncol) wcoulG = mydf.weighted_coulG(kpt, False, mesh) fused_cell_slice = (auxcell.nbas, fused_cell.nbas) if aosym == 's2': shls_slice = (sh0, sh1, 0, sh1) else: shls_slice = (sh0, sh1, 0, cell.nbas) for p0, p1 in lib.prange(0, ngrids, Gblksize): Gaux = ft_ao.ft_ao(fused_cell, Gv[p0:p1], fused_cell_slice, b, gxyz[p0:p1], Gvbase, kpt) Gaux *= wcoulG[p0:p1, None] kLR = Gaux.real.copy('C') kLI = Gaux.imag.copy('C') Gaux = None dat = ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, kpt, adapted_kptjs, out=buf) nG = p1 - p0 for k, ji in enumerate(adapted_ji_idx): aoao = dat[k].reshape(nG, ncol) pqkR = numpy.ndarray((ncol, nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ncol, nG), buffer=pqkIbuf) pqkR[:] = aoao.real.T pqkI[:] = aoao.imag.T lib.dot(kLR.T, pqkR.T, -1, j3cR[k][naux:], 1) lib.dot(kLI.T, pqkI.T, -1, j3cR[k][naux:], 1) if not (is_zero(kpt) and gamma_point(adapted_kptjs[k])): lib.dot(kLR.T, pqkI.T, -1, j3cI[k][naux:], 1) lib.dot(kLI.T, pqkR.T, 1, j3cI[k][naux:], 1) kLR = kLI = None for k, idx in enumerate(adapted_ji_idx): if is_zero(kpt) and gamma_point(adapted_kptjs[k]): v = fuse(j3cR[k]) else: v = fuse(j3cR[k] + j3cI[k] * 1j) if j2ctag == 'CD': v = scipy.linalg.solve_triangular(j2c, v, lower=True, overwrite_b=True) fswap['j3c-chunks/%d/%d' % (job_id, idx)][:naux0] = v else: fswap['j3c-chunks/%d/%d' % (job_id, idx)][:naux0] = lib.dot( j2c, v) # low-dimension systems if j2c_negative is not None: fswap['j3c-/%d/%d' % (job_id, idx)] = lib.dot(j2c_negative, v)
def ft_loop(self, gs=None, q=numpy.zeros(3), kpts=None, shls_slice=None, max_memory=4000, aosym='s1'): ''' Fourier transform iterator for all kpti which satisfy 2pi*N = (kpts - kpti - q)*a N = -1, 0, 1 ''' cell = self.cell if gs is None: gs = self.gs if kpts is None: assert (is_zero(q)) kpts = self.kpts kpts = numpy.asarray(kpts) nkpts = len(kpts) ao_loc = cell.ao_loc_nr() b = cell.reciprocal_vectors() Gv, Gvbase, kws = cell.get_Gv_weights(gs) gxyz = lib.cartesian_prod([numpy.arange(len(x)) for x in Gvbase]) ngs = gxyz.shape[0] if shls_slice is None: shls_slice = (0, cell.nbas, 0, cell.nbas) if aosym == 's2': assert (shls_slice[2] == 0) i0 = ao_loc[shls_slice[0]] i1 = ao_loc[shls_slice[1]] nij = i1 * (i1 + 1) // 2 - i0 * (i0 + 1) // 2 else: ni = ao_loc[shls_slice[1]] - ao_loc[shls_slice[0]] nj = ao_loc[shls_slice[3]] - ao_loc[shls_slice[2]] nij = ni * nj blksize = max(16, int(max_memory * .9e6 / (nij * (nkpts + 1) * 16))) blksize = min(blksize, ngs, 16384) buf = [numpy.zeros(nij * blksize, dtype='D') for k in range(nkpts)] pqkRbuf = numpy.empty(nij * blksize) pqkIbuf = numpy.empty(nij * blksize) if aosym == 's2': for p0, p1 in self.prange(0, ngs, blksize): ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, q, kpts, out=buf) nG = p1 - p0 for k in range(nkpts): aoao = numpy.ndarray((nG, nij), dtype=numpy.complex128, order='F', buffer=buf[k]) pqkR = numpy.ndarray((nij, nG), buffer=pqkRbuf) pqkI = numpy.ndarray((nij, nG), buffer=pqkIbuf) pqkR[:] = aoao.real.T pqkI[:] = aoao.imag.T yield (k, pqkR, pqkI, p0, p1) aoao[:] = 0 # == buf[k][:] = 0 else: for p0, p1 in self.prange(0, ngs, blksize): ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, q, kpts, out=buf) nG = p1 - p0 for k in range(nkpts): aoao = numpy.ndarray((nG, ni, nj), dtype=numpy.complex128, order='F', buffer=buf[k]) pqkR = numpy.ndarray((ni, nj, nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ni, nj, nG), buffer=pqkIbuf) pqkR[:] = aoao.real.transpose(1, 2, 0) pqkI[:] = aoao.imag.transpose(1, 2, 0) yield (k, pqkR.reshape(-1, nG), pqkI.reshape(-1, nG), p0, p1) aoao[:] = 0 # == buf[k][:] = 0
def make_kpt(uniq_kptji_id): # kpt = kptj - kpti kpt = uniq_kpts[uniq_kptji_id] log.debug1('kpt = %s', kpt) adapted_ji_idx = numpy.where(uniq_inverse == uniq_kptji_id)[0] adapted_kptjs = kptjs[adapted_ji_idx] nkptj = len(adapted_kptjs) log.debug1('adapted_ji_idx = %s', adapted_ji_idx) kLR = kLRs[uniq_kptji_id] kLI = kLIs[uniq_kptji_id] if is_zero(kpt): # kpti == kptj aosym = 's2' nao_pair = nao*(nao+1)//2 vbar = fuse(mydf.auxbar(fused_cell)) ovlp = cell.pbc_intor('cint1e_ovlp_sph', hermi=1, kpts=adapted_kptjs) for k, ji in enumerate(adapted_ji_idx): ovlp[k] = lib.pack_tril(ovlp[k]) else: aosym = 's1' nao_pair = nao**2 max_memory = max(2000, mydf.max_memory-lib.current_memory()[0]) # nkptj for 3c-coulomb arrays plus 1 Lpq array buflen = min(max(int(max_memory*.6*1e6/16/naux/(nkptj+1)), 1), nao_pair) shranges = _guess_shell_ranges(cell, buflen, aosym) buflen = max([x[2] for x in shranges]) # +1 for a pqkbuf if aosym == 's2': Gblksize = max(16, int(max_memory*.2*1e6/16/buflen/(nkptj+1))) else: Gblksize = max(16, int(max_memory*.4*1e6/16/buflen/(nkptj+1))) Gblksize = min(Gblksize, ngs, 16384) pqkRbuf = numpy.empty(buflen*Gblksize) pqkIbuf = numpy.empty(buflen*Gblksize) # buf for ft_aopair buf = numpy.zeros((nkptj,buflen*Gblksize), dtype=numpy.complex128) col1 = 0 for istep, sh_range in enumerate(shranges): log.debug1('int3c2e [%d/%d], AO [%d:%d], ncol = %d', \ istep+1, len(shranges), *sh_range) bstart, bend, ncol = sh_range col0, col1 = col1, col1+ncol j3cR = [] j3cI = [] for k, idx in enumerate(adapted_ji_idx): v = numpy.asarray(feri['j3c/%d'%idx][:,col0:col1]) if is_zero(kpt): for i, c in enumerate(vbar): if c != 0: v[i] -= c * ovlp[k][col0:col1] j3cR.append(numpy.asarray(v.real, order='C')) if is_zero(kpt) and gamma_point(adapted_kptjs[k]): j3cI.append(None) else: j3cI.append(numpy.asarray(v.imag, order='C')) if aosym == 's2': shls_slice = (bstart, bend, 0, bend) for p0, p1 in lib.prange(0, ngs, Gblksize): ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, kpt, adapted_kptjs, out=buf) nG = p1 - p0 for k, ji in enumerate(adapted_ji_idx): aoao = numpy.ndarray((nG,ncol), dtype=numpy.complex128, order='F', buffer=buf[k]) pqkR = numpy.ndarray((ncol,nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ncol,nG), buffer=pqkIbuf) pqkR[:] = aoao.real.T pqkI[:] = aoao.imag.T aoao[:] = 0 lib.dot(kLR[p0:p1].T, pqkR.T, -1, j3cR[k][naux:], 1) lib.dot(kLI[p0:p1].T, pqkI.T, -1, j3cR[k][naux:], 1) if not (is_zero(kpt) and gamma_point(adapted_kptjs[k])): lib.dot(kLR[p0:p1].T, pqkI.T, -1, j3cI[k][naux:], 1) lib.dot(kLI[p0:p1].T, pqkR.T, 1, j3cI[k][naux:], 1) else: shls_slice = (bstart, bend, 0, cell.nbas) ni = ncol // nao for p0, p1 in lib.prange(0, ngs, Gblksize): ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, kpt, adapted_kptjs, out=buf) nG = p1 - p0 for k, ji in enumerate(adapted_ji_idx): aoao = numpy.ndarray((nG,ni,nao), dtype=numpy.complex128, order='F', buffer=buf[k]) pqkR = numpy.ndarray((ni,nao,nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ni,nao,nG), buffer=pqkIbuf) pqkR[:] = aoao.real.transpose(1,2,0) pqkI[:] = aoao.imag.transpose(1,2,0) aoao[:] = 0 pqkR = pqkR.reshape(-1,nG) pqkI = pqkI.reshape(-1,nG) zdotCN(kLR[p0:p1].T, kLI[p0:p1].T, pqkR.T, pqkI.T, -1, j3cR[k][naux:], j3cI[k][naux:], 1) for k, ji in enumerate(adapted_ji_idx): if is_zero(kpt) and gamma_point(adapted_kptjs[k]): v = fuse(j3cR[k]) else: v = fuse(j3cR[k] + j3cI[k] * 1j) v = scipy.linalg.solve_triangular(j2c[uniq_kptji_id], v, lower=True, overwrite_b=True) feri['j3c/%d'%ji][:naux,col0:col1] = v
def _make_j3c(mydf, cell, auxcell, kptij_lst): t1 = (time.clock(), time.time()) log = logger.Logger(mydf.stdout, mydf.verbose) max_memory = max(2000, mydf.max_memory-lib.current_memory()[0]) fused_cell, fuse = fuse_auxcell(mydf, auxcell) outcore.aux_e2(cell, fused_cell, mydf._cderi, 'cint3c2e_sph', kptij_lst=kptij_lst, dataname='j3c', max_memory=max_memory) t1 = log.timer_debug1('3c2e', *t1) nao = cell.nao_nr() naux = auxcell.nao_nr() gs = mydf.gs Gv, Gvbase, kws = cell.get_Gv_weights(gs) b = cell.reciprocal_vectors() gxyz = lib.cartesian_prod([numpy.arange(len(x)) for x in Gvbase]) ngs = gxyz.shape[0] kptis = kptij_lst[:,0] kptjs = kptij_lst[:,1] kpt_ji = kptjs - kptis uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji) # j2c ~ (-kpt_ji | kpt_ji) j2c = fused_cell.pbc_intor('cint2c2e_sph', hermi=1, kpts=uniq_kpts) kLRs = [] kLIs = [] # chgcell = make_modchg_basis(auxcell, mydf.eta) # for k, kpt in enumerate(uniq_kpts): # aoaux = ft_ao.ft_ao(chgcell, Gv, None, b, gxyz, Gvbase, kpt).T # coulG = numpy.sqrt(mydf.weighted_coulG(kpt, False, gs)) # LkR = aoaux.real * coulG # LkI = aoaux.imag * coulG # j2caux = numpy.zeros_like(j2c[k]) # j2caux[naux:,naux:] = j2c[naux:,naux:] # if is_zero(kpt): # kpti == kptj # j2caux[naux:,naux:] -= lib.ddot(LkR, LkR.T) # j2caux[naux:,naux:] -= lib.ddot(LkI, LkI.T) # j2c[k] = j2c[k][:naux,:naux] - fuse(fuse(j2caux.T).T) # vbar = fuse(mydf.auxbar(fused_cell)) # s = (vbar != 0).astype(numpy.double) # j2c[k] -= numpy.einsum('i,j->ij', vbar, s) # j2c[k] -= numpy.einsum('i,j->ij', s, vbar) # else: # j2cR, j2cI = zdotCN(LkR, LkI, LkR.T, LkI.T) # j2caux[naux:,naux:] -= j2cR + j2cI * 1j # j2c[k] = j2c[k][:naux,:naux] - fuse(fuse(j2caux.T).T) # #j2c[k] = fuse(fuse(j2c[k]).T).T.copy() # try: # j2c[k] = scipy.linalg.cholesky(fuse(fuse(j2c[k]).T).T, lower=True) # except scipy.linalg.LinAlgError as e: # msg =('===================================\n' # 'J-metric not positive definite.\n' # 'It is likely that gs is not enough.\n' # '===================================') # log.error(msg) # raise scipy.linalg.LinAlgError('\n'.join([e.message, msg])) # kLR = LkR.T # kLI = LkI.T # if not kLR.flags.c_contiguous: kLR = lib.transpose(LkR) # if not kLI.flags.c_contiguous: kLI = lib.transpose(LkI) # kLR *= coulG.reshape(-1,1) # kLI *= coulG.reshape(-1,1) # kLRs.append(kLR) # kLIs.append(kLI) # aoaux = LkR = LkI = kLR = kLI = coulG = None for k, kpt in enumerate(uniq_kpts): aoaux = ft_ao.ft_ao(fused_cell, Gv, None, b, gxyz, Gvbase, kpt).T coulG = numpy.sqrt(mydf.weighted_coulG(kpt, False, gs)) LkR = aoaux.real * coulG LkI = aoaux.imag * coulG if is_zero(kpt): # kpti == kptj j2c[k][naux:] -= lib.ddot(LkR[naux:], LkR.T) j2c[k][naux:] -= lib.ddot(LkI[naux:], LkI.T) j2c[k][:naux,naux:] = j2c[k][naux:,:naux].T else: j2cR, j2cI = zdotCN(LkR[naux:], LkI[naux:], LkR.T, LkI.T) j2c[k][naux:] -= j2cR + j2cI * 1j j2c[k][:naux,naux:] = j2c[k][naux:,:naux].T.conj() #j2c[k] = fuse(fuse(j2c[k]).T).T.copy() try: j2c[k] = scipy.linalg.cholesky(fuse(fuse(j2c[k]).T).T, lower=True) except scipy.linalg.LinAlgError as e: msg =('===================================\n' 'J-metric not positive definite.\n' 'It is likely that gs is not enough.\n' '===================================') log.error(msg) raise scipy.linalg.LinAlgError('\n'.join([e.message, msg])) kLR = LkR[naux:].T kLI = LkI[naux:].T if not kLR.flags.c_contiguous: kLR = lib.transpose(LkR[naux:]) if not kLI.flags.c_contiguous: kLI = lib.transpose(LkI[naux:]) kLR *= coulG.reshape(-1,1) kLI *= coulG.reshape(-1,1) kLRs.append(kLR) kLIs.append(kLI) aoaux = LkR = LkI = kLR = kLI = coulG = None feri = h5py.File(mydf._cderi) def make_kpt(uniq_kptji_id): # kpt = kptj - kpti kpt = uniq_kpts[uniq_kptji_id] log.debug1('kpt = %s', kpt) adapted_ji_idx = numpy.where(uniq_inverse == uniq_kptji_id)[0] adapted_kptjs = kptjs[adapted_ji_idx] nkptj = len(adapted_kptjs) log.debug1('adapted_ji_idx = %s', adapted_ji_idx) kLR = kLRs[uniq_kptji_id] kLI = kLIs[uniq_kptji_id] if is_zero(kpt): # kpti == kptj aosym = 's2' nao_pair = nao*(nao+1)//2 vbar = fuse(mydf.auxbar(fused_cell)) ovlp = cell.pbc_intor('cint1e_ovlp_sph', hermi=1, kpts=adapted_kptjs) for k, ji in enumerate(adapted_ji_idx): ovlp[k] = lib.pack_tril(ovlp[k]) else: aosym = 's1' nao_pair = nao**2 max_memory = max(2000, mydf.max_memory-lib.current_memory()[0]) # nkptj for 3c-coulomb arrays plus 1 Lpq array buflen = min(max(int(max_memory*.6*1e6/16/naux/(nkptj+1)), 1), nao_pair) shranges = _guess_shell_ranges(cell, buflen, aosym) buflen = max([x[2] for x in shranges]) # +1 for a pqkbuf if aosym == 's2': Gblksize = max(16, int(max_memory*.2*1e6/16/buflen/(nkptj+1))) else: Gblksize = max(16, int(max_memory*.4*1e6/16/buflen/(nkptj+1))) Gblksize = min(Gblksize, ngs, 16384) pqkRbuf = numpy.empty(buflen*Gblksize) pqkIbuf = numpy.empty(buflen*Gblksize) # buf for ft_aopair buf = numpy.zeros((nkptj,buflen*Gblksize), dtype=numpy.complex128) col1 = 0 for istep, sh_range in enumerate(shranges): log.debug1('int3c2e [%d/%d], AO [%d:%d], ncol = %d', \ istep+1, len(shranges), *sh_range) bstart, bend, ncol = sh_range col0, col1 = col1, col1+ncol j3cR = [] j3cI = [] for k, idx in enumerate(adapted_ji_idx): v = numpy.asarray(feri['j3c/%d'%idx][:,col0:col1]) if is_zero(kpt): for i, c in enumerate(vbar): if c != 0: v[i] -= c * ovlp[k][col0:col1] j3cR.append(numpy.asarray(v.real, order='C')) if is_zero(kpt) and gamma_point(adapted_kptjs[k]): j3cI.append(None) else: j3cI.append(numpy.asarray(v.imag, order='C')) if aosym == 's2': shls_slice = (bstart, bend, 0, bend) for p0, p1 in lib.prange(0, ngs, Gblksize): ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, kpt, adapted_kptjs, out=buf) nG = p1 - p0 for k, ji in enumerate(adapted_ji_idx): aoao = numpy.ndarray((nG,ncol), dtype=numpy.complex128, order='F', buffer=buf[k]) pqkR = numpy.ndarray((ncol,nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ncol,nG), buffer=pqkIbuf) pqkR[:] = aoao.real.T pqkI[:] = aoao.imag.T aoao[:] = 0 lib.dot(kLR[p0:p1].T, pqkR.T, -1, j3cR[k][naux:], 1) lib.dot(kLI[p0:p1].T, pqkI.T, -1, j3cR[k][naux:], 1) if not (is_zero(kpt) and gamma_point(adapted_kptjs[k])): lib.dot(kLR[p0:p1].T, pqkI.T, -1, j3cI[k][naux:], 1) lib.dot(kLI[p0:p1].T, pqkR.T, 1, j3cI[k][naux:], 1) else: shls_slice = (bstart, bend, 0, cell.nbas) ni = ncol // nao for p0, p1 in lib.prange(0, ngs, Gblksize): ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, kpt, adapted_kptjs, out=buf) nG = p1 - p0 for k, ji in enumerate(adapted_ji_idx): aoao = numpy.ndarray((nG,ni,nao), dtype=numpy.complex128, order='F', buffer=buf[k]) pqkR = numpy.ndarray((ni,nao,nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ni,nao,nG), buffer=pqkIbuf) pqkR[:] = aoao.real.transpose(1,2,0) pqkI[:] = aoao.imag.transpose(1,2,0) aoao[:] = 0 pqkR = pqkR.reshape(-1,nG) pqkI = pqkI.reshape(-1,nG) zdotCN(kLR[p0:p1].T, kLI[p0:p1].T, pqkR.T, pqkI.T, -1, j3cR[k][naux:], j3cI[k][naux:], 1) for k, ji in enumerate(adapted_ji_idx): if is_zero(kpt) and gamma_point(adapted_kptjs[k]): v = fuse(j3cR[k]) else: v = fuse(j3cR[k] + j3cI[k] * 1j) v = scipy.linalg.solve_triangular(j2c[uniq_kptji_id], v, lower=True, overwrite_b=True) feri['j3c/%d'%ji][:naux,col0:col1] = v for k, kpt in enumerate(uniq_kpts): make_kpt(k) for k, kptij in enumerate(kptij_lst): v = feri['j3c/%d'%k][:naux] del(feri['j3c/%d'%k]) feri['j3c/%d'%k] = v feri.close()
def _make_j3c(mydf, cell, auxcell, kptij_lst): t1 = (time.clock(), time.time()) log = logger.Logger(mydf.stdout, mydf.verbose) max_memory = max(2000, mydf.max_memory-lib.current_memory()[0]) fused_cell, fuse = fuse_auxcell(mydf, mydf.auxcell) nao = cell.nao_nr() naux = auxcell.nao_nr() gs = mydf.gs Gv, Gvbase, kws = cell.get_Gv_weights(gs) b = cell.reciprocal_vectors() gxyz = lib.cartesian_prod([numpy.arange(len(x)) for x in Gvbase]) ngs = gxyz.shape[0] kptis = kptij_lst[:,0] kptjs = kptij_lst[:,1] kpt_ji = kptjs - kptis uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji) # j2c ~ (-kpt_ji | kpt_ji) j2c = fused_cell.pbc_intor('cint2c2e_sph', hermi=1, kpts=uniq_kpts) kLRs = [] kLIs = [] for k, kpt in enumerate(uniq_kpts): aoaux = ft_ao.ft_ao(fused_cell, Gv, None, b, gxyz, Gvbase, kpt).T aoaux = fuse(aoaux) coulG = numpy.sqrt(mydf.weighted_coulG(kpt, False, gs)) kLR = (aoaux.real * coulG).T kLI = (aoaux.imag * coulG).T if not kLR.flags.c_contiguous: kLR = lib.transpose(kLR.T) if not kLI.flags.c_contiguous: kLI = lib.transpose(kLI.T) j2c[k] = fuse(fuse(j2c[k]).T).T.copy() if is_zero(kpt): # kpti == kptj j2c[k] -= lib.dot(kLR.T, kLR) j2c[k] -= lib.dot(kLI.T, kLI) else: # aoaux ~ kpt_ij, aoaux.conj() ~ kpt_kl j2cR, j2cI = zdotCN(kLR.T, kLI.T, kLR, kLI) j2c[k] -= j2cR + j2cI * 1j w, v = scipy.linalg.eigh(j2c[k]) log.debug('MDF metric for kpt %s cond = %.4g, drop %d bfns', k, w[0]/w[-1], numpy.count_nonzero(w<df.LINEAR_DEP_THR)) v = v[:,w>df.LINEAR_DEP_THR].T.conj() v /= numpy.sqrt(w[w>df.LINEAR_DEP_THR]).reshape(-1,1) j2c[k] = ('eig', v) kLR *= coulG.reshape(-1,1) kLI *= coulG.reshape(-1,1) kLRs.append(kLR) kLIs.append(kLI) aoaux = kLR = kLI = j2cR = j2cI = coulG = None outcore.aux_e2(cell, fused_cell, mydf._cderi, 'cint3c2e_sph', kptij_lst=kptij_lst, dataname='j3c', max_memory=max_memory) t1 = log.timer_debug1('3c2e', *t1) nauxs = [v[1].shape[0] for v in j2c] feri = h5py.File(mydf._cderi) def make_kpt(uniq_kptji_id): # kpt = kptj - kpti kpt = uniq_kpts[uniq_kptji_id] log.debug1('kpt = %s', kpt) adapted_ji_idx = numpy.where(uniq_inverse == uniq_kptji_id)[0] adapted_kptjs = kptjs[adapted_ji_idx] nkptj = len(adapted_kptjs) log.debug1('adapted_ji_idx = %s', adapted_ji_idx) kLR = kLRs[uniq_kptji_id] kLI = kLIs[uniq_kptji_id] if is_zero(kpt): # kpti == kptj aosym = 's2' nao_pair = nao*(nao+1)//2 vbar = fuse(mydf.auxbar(fused_cell)) ovlp = cell.pbc_intor('cint1e_ovlp_sph', hermi=1, kpts=adapted_kptjs) for k, ji in enumerate(adapted_ji_idx): ovlp[k] = lib.pack_tril(ovlp[k]) else: aosym = 's1' nao_pair = nao**2 mem_now = lib.current_memory()[0] log.debug2('memory = %s', mem_now) max_memory = max(2000, mydf.max_memory-mem_now) # nkptj for 3c-coulomb arrays plus 1 Lpq array buflen = min(max(int(max_memory*.6*1e6/16/naux/(nkptj+1)), 1), nao_pair) shranges = _guess_shell_ranges(cell, buflen, aosym) buflen = max([x[2] for x in shranges]) # +1 for a pqkbuf if aosym == 's2': Gblksize = max(16, int(max_memory*.2*1e6/16/buflen/(nkptj+1))) else: Gblksize = max(16, int(max_memory*.4*1e6/16/buflen/(nkptj+1))) Gblksize = min(Gblksize, ngs, 16384) pqkRbuf = numpy.empty(buflen*Gblksize) pqkIbuf = numpy.empty(buflen*Gblksize) # buf for ft_aopair buf = numpy.zeros((nkptj,buflen*Gblksize), dtype=numpy.complex128) col1 = 0 for istep, sh_range in enumerate(shranges): log.debug1('int3c2e [%d/%d], AO [%d:%d], ncol = %d', \ istep+1, len(shranges), *sh_range) bstart, bend, ncol = sh_range col0, col1 = col1, col1+ncol j3cR = [] j3cI = [] for k, idx in enumerate(adapted_ji_idx): v = fuse(numpy.asarray(feri['j3c/%d'%idx][:,col0:col1])) if is_zero(kpt): for i, c in enumerate(vbar): if c != 0: v[i] -= c * ovlp[k][col0:col1] j3cR.append(numpy.asarray(v.real, order='C')) if is_zero(kpt) and gamma_point(adapted_kptjs[k]): j3cI.append(None) else: j3cI.append(numpy.asarray(v.imag, order='C')) v = None if aosym == 's2': shls_slice = (bstart, bend, 0, bend) for p0, p1 in lib.prange(0, ngs, Gblksize): ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, kpt, adapted_kptjs, out=buf) nG = p1 - p0 for k, ji in enumerate(adapted_ji_idx): aoao = numpy.ndarray((nG,ncol), dtype=numpy.complex128, order='F', buffer=buf[k]) pqkR = numpy.ndarray((ncol,nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ncol,nG), buffer=pqkIbuf) pqkR[:] = aoao.real.T pqkI[:] = aoao.imag.T aoao[:] = 0 lib.dot(kLR[p0:p1].T, pqkR.T, -1, j3cR[k], 1) lib.dot(kLI[p0:p1].T, pqkI.T, -1, j3cR[k], 1) if not (is_zero(kpt) and gamma_point(adapted_kptjs[k])): lib.dot(kLR[p0:p1].T, pqkI.T, -1, j3cI[k], 1) lib.dot(kLI[p0:p1].T, pqkR.T, 1, j3cI[k], 1) else: shls_slice = (bstart, bend, 0, cell.nbas) ni = ncol // nao for p0, p1 in lib.prange(0, ngs, Gblksize): ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, kpt, adapted_kptjs, out=buf) nG = p1 - p0 for k, ji in enumerate(adapted_ji_idx): aoao = numpy.ndarray((nG,ni,nao), dtype=numpy.complex128, order='F', buffer=buf[k]) pqkR = numpy.ndarray((ni,nao,nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ni,nao,nG), buffer=pqkIbuf) pqkR[:] = aoao.real.transpose(1,2,0) pqkI[:] = aoao.imag.transpose(1,2,0) aoao[:] = 0 pqkR = pqkR.reshape(-1,nG) pqkI = pqkI.reshape(-1,nG) zdotCN(kLR[p0:p1].T, kLI[p0:p1].T, pqkR.T, pqkI.T, -1, j3cR[k], j3cI[k], 1) naux0 = nauxs[uniq_kptji_id] for k, ji in enumerate(adapted_ji_idx): if is_zero(kpt) and gamma_point(adapted_kptjs[k]): v = j3cR[k] else: v = j3cR[k] + j3cI[k] * 1j if j2c[uniq_kptji_id][0] == 'CD': v = scipy.linalg.solve_triangular(j2c[uniq_kptji_id][1], v, lower=True, overwrite_b=True) else: v = lib.dot(j2c[uniq_kptji_id][1], v) feri['j3c/%d'%ji][:naux0,col0:col1] = v naux0 = nauxs[uniq_kptji_id] for k, ji in enumerate(adapted_ji_idx): v = feri['j3c/%d'%ji][:naux0] del(feri['j3c/%d'%ji]) feri['j3c/%d'%ji] = v for k, kpt in enumerate(uniq_kpts): make_kpt(k) feri.close()
def _make_j3c(mydf, cell, auxcell, kptij_lst): t1 = (time.clock(), time.time()) log = logger.Logger(mydf.stdout, mydf.verbose) max_memory = max(2000, mydf.max_memory-lib.current_memory()[0]) fused_cell, fuse = fuse_auxcell(mydf, mydf.auxcell) if mydf.metric.upper() != 'J': outcore.aux_e2(cell, fused_cell, mydf._cderi, 'cint3c2e_sph', kptij_lst=kptij_lst, dataname='j3c', max_memory=max_memory) t1 = log.timer_debug1('3c2e', *t1) nao = cell.nao_nr() naux = auxcell.nao_nr() gs = mydf.gs Gv, Gvbase, kws = cell.get_Gv_weights(gs) b = cell.reciprocal_vectors() gxyz = lib.cartesian_prod([numpy.arange(len(x)) for x in Gvbase]) ngs = gxyz.shape[0] kptis = kptij_lst[:,0] kptjs = kptij_lst[:,1] kpt_ji = kptjs - kptis uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji) # j2c ~ (-kpt_ji | kpt_ji) j2c = fused_cell.pbc_intor('cint2c2e_sph', hermi=1, kpts=uniq_kpts) kLRs = [] kLIs = [] for k, kpt in enumerate(uniq_kpts): aoaux = ft_ao.ft_ao(fused_cell, Gv, None, b, gxyz, Gvbase, kpt).T aoaux = fuse(aoaux) coulG = numpy.sqrt(mydf.weighted_coulG(kpt, False, gs)) kLR = (aoaux.real * coulG).T kLI = (aoaux.imag * coulG).T if not kLR.flags.c_contiguous: kLR = lib.transpose(kLR.T) if not kLI.flags.c_contiguous: kLI = lib.transpose(kLI.T) j2c[k] = fuse(fuse(j2c[k]).T).T.copy() if is_zero(kpt): # kpti == kptj j2c[k] -= lib.dot(kLR.T, kLR) j2c[k] -= lib.dot(kLI.T, kLI) else: # aoaux ~ kpt_ij, aoaux.conj() ~ kpt_kl j2cR, j2cI = zdotCN(kLR.T, kLI.T, kLR, kLI) j2c[k] -= j2cR + j2cI * 1j kLR *= coulG.reshape(-1,1) kLI *= coulG.reshape(-1,1) kLRs.append(kLR) kLIs.append(kLI) aoaux = kLR = kLI = j2cR = j2cI = coulG = None feri = h5py.File(mydf._cderi) log.debug2('memory = %s', lib.current_memory()[0]) # Expand approx Lpq for aosym='s1'. The approx Lpq are all in aosym='s2' mode if mydf.approx_sr_level > 0 and len(kptij_lst) > 1: Lpq_fake = _fake_Lpq_kpts(mydf, feri, naux, nao) def save(label, dat, col0, col1): nrow = dat.shape[0] feri[label][:nrow,col0:col1] = dat def make_kpt(uniq_kptji_id): # kpt = kptj - kpti kpt = uniq_kpts[uniq_kptji_id] log.debug1('kpt = %s', kpt) adapted_ji_idx = numpy.where(uniq_inverse == uniq_kptji_id)[0] adapted_kptjs = kptjs[adapted_ji_idx] nkptj = len(adapted_kptjs) log.debug1('adapted_ji_idx = %s', adapted_ji_idx) kLR = kLRs[uniq_kptji_id] kLI = kLIs[uniq_kptji_id] if is_zero(kpt): # kpti == kptj aosym = 's2' nao_pair = nao*(nao+1)//2 vbar = fuse(mydf.auxbar(fused_cell)) ovlp = cell.pbc_intor('cint1e_ovlp_sph', hermi=1, kpts=adapted_kptjs) for k, ji in enumerate(adapted_ji_idx): ovlp[k] = lib.pack_tril(ovlp[k]) else: aosym = 's1' nao_pair = nao**2 mem_now = lib.current_memory()[0] log.debug2('memory = %s', mem_now) max_memory = max(2000, mydf.max_memory-mem_now) # nkptj for 3c-coulomb arrays plus 1 Lpq array buflen = min(max(int(max_memory*.6*1e6/16/naux/(nkptj+1)), 1), nao_pair) shranges = pyscf.df.outcore._guess_shell_ranges(cell, buflen, aosym) buflen = max([x[2] for x in shranges]) # +1 for a pqkbuf if aosym == 's2': Gblksize = max(16, int(max_memory*.2*1e6/16/buflen/(nkptj+1))) else: Gblksize = max(16, int(max_memory*.4*1e6/16/buflen/(nkptj+1))) Gblksize = min(Gblksize, ngs, 16384) pqkRbuf = numpy.empty(buflen*Gblksize) pqkIbuf = numpy.empty(buflen*Gblksize) # buf for ft_aopair buf = numpy.zeros((nkptj,buflen*Gblksize), dtype=numpy.complex128) col1 = 0 for istep, sh_range in enumerate(shranges): log.debug1('int3c2e [%d/%d], AO [%d:%d], ncol = %d', \ istep+1, len(shranges), *sh_range) bstart, bend, ncol = sh_range col0, col1 = col1, col1+ncol j3cR = [] j3cI = [] for k, idx in enumerate(adapted_ji_idx): v = fuse(numpy.asarray(feri['j3c/%d'%idx][:,col0:col1])) if mydf.approx_sr_level == 0: Lpq = numpy.asarray(feri['Lpq/%d'%idx][:,col0:col1]) elif aosym == 's2': Lpq = numpy.asarray(feri['Lpq/0'][:,col0:col1]) else: Lpq = numpy.asarray(Lpq_fake[:,col0:col1]) lib.dot(j2c[uniq_kptji_id], Lpq, -.5, v, 1) if is_zero(kpt): for i, c in enumerate(vbar): if c != 0: v[i] -= c * ovlp[k][col0:col1] j3cR.append(numpy.asarray(v.real, order='C')) if is_zero(kpt) and gamma_point(adapted_kptjs[k]): j3cI.append(None) else: j3cI.append(numpy.asarray(v.imag, order='C')) v = Lpq = None log.debug3(' istep, k = %d %d memory = %s', istep, k, lib.current_memory()[0]) if aosym == 's2': shls_slice = (bstart, bend, 0, bend) for p0, p1 in lib.prange(0, ngs, Gblksize): ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, kpt, adapted_kptjs, out=buf) nG = p1 - p0 for k, ji in enumerate(adapted_ji_idx): aoao = numpy.ndarray((nG,ncol), dtype=numpy.complex128, order='F', buffer=buf[k]) pqkR = numpy.ndarray((ncol,nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ncol,nG), buffer=pqkIbuf) pqkR[:] = aoao.real.T pqkI[:] = aoao.imag.T aoao[:] = 0 lib.dot(kLR[p0:p1].T, pqkR.T, -1, j3cR[k], 1) lib.dot(kLI[p0:p1].T, pqkI.T, -1, j3cR[k], 1) if not (is_zero(kpt) and gamma_point(adapted_kptjs[k])): lib.dot(kLR[p0:p1].T, pqkI.T, -1, j3cI[k], 1) lib.dot(kLI[p0:p1].T, pqkR.T, 1, j3cI[k], 1) log.debug3(' p0:p1 = %d:%d memory = %s', p0, p1, lib.current_memory()[0]) else: shls_slice = (bstart, bend, 0, cell.nbas) ni = ncol // nao for p0, p1 in lib.prange(0, ngs, Gblksize): ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, kpt, adapted_kptjs, out=buf) nG = p1 - p0 for k, ji in enumerate(adapted_ji_idx): aoao = numpy.ndarray((nG,ni,nao), dtype=numpy.complex128, order='F', buffer=buf[k]) pqkR = numpy.ndarray((ni,nao,nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ni,nao,nG), buffer=pqkIbuf) pqkR[:] = aoao.real.transpose(1,2,0) pqkI[:] = aoao.imag.transpose(1,2,0) aoao[:] = 0 pqkR = pqkR.reshape(-1,nG) pqkI = pqkI.reshape(-1,nG) zdotCN(kLR[p0:p1].T, kLI[p0:p1].T, pqkR.T, pqkI.T, -1, j3cR[k], j3cI[k], 1) log.debug3(' p0:p1 = %d:%d memory = %s', p0, p1, lib.current_memory()[0]) for k, ji in enumerate(adapted_ji_idx): if is_zero(kpt) and gamma_point(adapted_kptjs[k]): save('j3c/%d'%ji, j3cR[k], col0, col1) else: save('j3c/%d'%ji, j3cR[k]+j3cI[k]*1j, col0, col1) for k, kpt in enumerate(uniq_kpts): make_kpt(k) feri.close()
def ft_fuse(job_id, uniq_kptji_id, sh0, sh1): kpt = uniq_kpts[uniq_kptji_id] # kpt = kptj - kpti adapted_ji_idx = numpy.where(uniq_inverse == uniq_kptji_id)[0] adapted_kptjs = kptjs[adapted_ji_idx] nkptj = len(adapted_kptjs) shls_slice = (auxcell.nbas, fused_cell.nbas) Gaux = ft_ao.ft_ao(fused_cell, Gv, shls_slice, b, gxyz, Gvbase, kpt) Gaux *= mydf.weighted_coulG(kpt, False, gs).reshape(-1, 1) kLR = Gaux.real.copy('C') kLI = Gaux.imag.copy('C') j2c = numpy.asarray(feri['j2c/%d' % uniq_kptji_id]) j2ctag = j2ctags[uniq_kptji_id] naux0 = j2c.shape[0] if is_zero(kpt): aosym = 's2' else: aosym = 's1' j3cR = [None] * nkptj j3cI = [None] * nkptj i0 = ao_loc[sh0] i1 = ao_loc[sh1] for k, idx in enumerate(adapted_ji_idx): key = 'j3c-chunks/%d/%d' % (job_id, idx) v = numpy.asarray(feri[key]) if is_zero(kpt): for i, c in enumerate(vbar): if c != 0: v[i] -= c * ovlp[k][i0 * (i0 + 1) // 2:i1 * (i1 + 1) // 2].ravel() j3cR[k] = numpy.asarray(v.real, order='C') if v.dtype == numpy.complex128: j3cI[k] = numpy.asarray(v.imag, order='C') v = None ncol = j3cR[0].shape[1] Gblksize = max(16, int(max_memory * 1e6 / 16 / ncol / (nkptj + 1))) # +1 for pqkRbuf/pqkIbuf Gblksize = min(Gblksize, ngs, 16384) pqkRbuf = numpy.empty(ncol * Gblksize) pqkIbuf = numpy.empty(ncol * Gblksize) buf = numpy.empty(nkptj * ncol * Gblksize, dtype=numpy.complex128) log.alldebug2(' blksize (%d,%d)', Gblksize, ncol) shls_slice = (sh0, sh1, 0, cell.nbas) for p0, p1 in lib.prange(0, ngs, Gblksize): dat = ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, kpt, adapted_kptjs, out=buf) nG = p1 - p0 for k, ji in enumerate(adapted_ji_idx): aoao = dat[k].reshape(nG, ncol) pqkR = numpy.ndarray((ncol, nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ncol, nG), buffer=pqkIbuf) pqkR[:] = aoao.real.T pqkI[:] = aoao.imag.T lib.dot(kLR[p0:p1].T, pqkR.T, -1, j3cR[k][naux:], 1) lib.dot(kLI[p0:p1].T, pqkI.T, -1, j3cR[k][naux:], 1) if not (is_zero(kpt) and gamma_point(adapted_kptjs[k])): lib.dot(kLR[p0:p1].T, pqkI.T, -1, j3cI[k][naux:], 1) lib.dot(kLI[p0:p1].T, pqkR.T, 1, j3cI[k][naux:], 1) for k, idx in enumerate(adapted_ji_idx): if is_zero(kpt) and gamma_point(adapted_kptjs[k]): v = fuse(j3cR[k]) else: v = fuse(j3cR[k] + j3cI[k] * 1j) if j2ctag == 'CD': v = scipy.linalg.solve_triangular(j2c, v, lower=True, overwrite_b=True) else: v = lib.dot(j2c, v) feri['j3c-chunks/%d/%d' % (job_id, idx)][:naux0] = v
def _make_j3c(mydf, cell, auxcell, kptij_lst, cderi_file): log = logger.Logger(mydf.stdout, mydf.verbose) t1 = t0 = (time.clock(), time.time()) fused_cell, fuse = fuse_auxcell(mydf, mydf.auxcell) ao_loc = cell.ao_loc_nr() nao = ao_loc[-1] naux = auxcell.nao_nr() nkptij = len(kptij_lst) gs = mydf.gs Gv, Gvbase, kws = cell.get_Gv_weights(gs) b = cell.reciprocal_vectors() gxyz = lib.cartesian_prod([numpy.arange(len(x)) for x in Gvbase]) ngs = gxyz.shape[0] kptis = kptij_lst[:, 0] kptjs = kptij_lst[:, 1] kpt_ji = kptjs - kptis uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji) log.debug('Num uniq kpts %d', len(uniq_kpts)) log.debug2('uniq_kpts %s', uniq_kpts) # j2c ~ (-kpt_ji | kpt_ji) j2c = fused_cell.pbc_intor('int2c2e_sph', hermi=1, kpts=uniq_kpts) j2ctags = [] nauxs = [] t1 = log.timer_debug1('2c2e', *t1) if h5py.is_hdf5(cderi_file): feri = h5py.File(cderi_file) else: feri = h5py.File(cderi_file, 'w') for k, kpt in enumerate(uniq_kpts): aoaux = ft_ao.ft_ao(fused_cell, Gv, None, b, gxyz, Gvbase, kpt).T coulG = numpy.sqrt(mydf.weighted_coulG(kpt, False, gs)) kLR = (aoaux.real * coulG).T kLI = (aoaux.imag * coulG).T if not kLR.flags.c_contiguous: kLR = lib.transpose(kLR.T) if not kLI.flags.c_contiguous: kLI = lib.transpose(kLI.T) aoaux = None kLR1 = numpy.asarray(kLR[:, naux:], order='C') kLI1 = numpy.asarray(kLI[:, naux:], order='C') if is_zero(kpt): # kpti == kptj for p0, p1 in mydf.mpi_prange(0, ngs): j2cR = lib.ddot(kLR1[p0:p1].T, kLR[p0:p1]) j2cR = lib.ddot(kLI1[p0:p1].T, kLI[p0:p1], 1, j2cR, 1) j2c[k][naux:] -= mpi.allreduce(j2cR) j2c[k][:naux, naux:] = j2c[k][naux:, :naux].T else: for p0, p1 in mydf.mpi_prange(0, ngs): j2cR, j2cI = zdotCN(kLR1[p0:p1].T, kLI1[p0:p1].T, kLR[p0:p1], kLI[p0:p1]) j2cR = mpi.allreduce(j2cR) j2cI = mpi.allreduce(j2cI) j2c[k][naux:] -= j2cR + j2cI * 1j j2c[k][:naux, naux:] = j2c[k][naux:, :naux].T.conj() j2c[k] = fuse(fuse(j2c[k]).T).T try: feri['j2c/%d' % k] = scipy.linalg.cholesky(j2c[k], lower=True) j2ctags.append('CD') nauxs.append(naux) except scipy.linalg.LinAlgError as e: #msg =('===================================\n' # 'J-metric not positive definite.\n' # 'It is likely that gs is not enough.\n' # '===================================') #log.error(msg) #raise scipy.linalg.LinAlgError('\n'.join([e.message, msg])) w, v = scipy.linalg.eigh(j2c) log.debug2('metric linear dependency for kpt %s', uniq_kptji_id) log.debug2('cond = %.4g, drop %d bfns', w[0] / w[-1], numpy.count_nonzero(w < LINEAR_DEP_THR)) v = v[:, w > LINEAR_DEP_THR].T.conj() v /= numpy.sqrt(w[w > LINEAR_DEP_THR]).reshape(-1, 1) feri['j2c/%d' % k] = v j2ctags.append('eig') nauxs.append(v.shape[0]) kLR = kLI = kLR1 = kLI1 = coulG = None j2c = None aosym_s2 = numpy.einsum('ix->i', abs(kptis - kptjs)) < 1e-9 j_only = numpy.all(aosym_s2) if gamma_point(kptij_lst): dtype = 'f8' else: dtype = 'c16' vbar = mydf.auxbar(fused_cell) vbar = fuse(vbar) ovlp = cell.pbc_intor('int1e_ovlp_sph', hermi=1, kpts=kptjs[aosym_s2]) ovlp = [lib.pack_tril(s) for s in ovlp] t1 = log.timer_debug1('aoaux and int2c', *t1) # Estimates the buffer size based on the last contraction in G-space. # This contraction requires to hold nkptj copies of (naux,?) array # simultaneously in memory. mem_now = max(comm.allgather(lib.current_memory()[0])) max_memory = max(2000, mydf.max_memory - mem_now) nkptj_max = max((uniq_inverse == x).sum() for x in set(uniq_inverse)) buflen = max( int( min(max_memory * .5e6 / 16 / naux / (nkptj_max + 2) / nao, nao / 3 / mpi.pool.size)), 1) chunks = (buflen, nao) j3c_jobs = grids2d_int3c_jobs(cell, auxcell, kptij_lst, chunks, j_only) log.debug1('max_memory = %d MB (%d in use) chunks %s', max_memory, mem_now, chunks) log.debug2('j3c_jobs %s', j3c_jobs) if j_only: int3c = wrap_int3c(cell, fused_cell, 'int3c2e_sph', 's2', 1, kptij_lst) else: int3c = wrap_int3c(cell, fused_cell, 'int3c2e_sph', 's1', 1, kptij_lst) idxb = numpy.tril_indices(nao) idxb = (idxb[0] * nao + idxb[1]).astype('i') aux_loc = fused_cell.ao_loc_nr('ssc' in 'int3c2e_sph') def gen_int3c(auxcell, job_id, ish0, ish1): dataname = 'j3c-chunks/%d' % job_id if dataname in feri: del (feri[dataname]) i0 = ao_loc[ish0] i1 = ao_loc[ish1] dii = i1 * (i1 + 1) // 2 - i0 * (i0 + 1) // 2 dij = (i1 - i0) * nao if j_only: buflen = max(8, int(max_memory * 1e6 / 16 / (nkptij * dii + dii))) else: buflen = max(8, int(max_memory * 1e6 / 16 / (nkptij * dij + dij))) auxranges = balance_segs(aux_loc[1:] - aux_loc[:-1], buflen) buflen = max([x[2] for x in auxranges]) buf = numpy.empty(nkptij * dij * buflen, dtype=dtype) buf1 = numpy.empty(dij * buflen, dtype=dtype) naux = aux_loc[-1] for kpt_id, kptij in enumerate(kptij_lst): key = '%s/%d' % (dataname, kpt_id) if aosym_s2[kpt_id]: shape = (naux, dii) else: shape = (naux, dij) if gamma_point(kptij): feri.create_dataset(key, shape, 'f8') else: feri.create_dataset(key, shape, 'c16') naux0 = 0 for istep, auxrange in enumerate(auxranges): log.alldebug2("aux_e2 job_id %d step %d", job_id, istep) sh0, sh1, nrow = auxrange sub_slice = (ish0, ish1, 0, cell.nbas, sh0, sh1) if j_only: mat = numpy.ndarray((nkptij, dii, nrow), dtype=dtype, buffer=buf) else: mat = numpy.ndarray((nkptij, dij, nrow), dtype=dtype, buffer=buf) mat = int3c(sub_slice, mat) for k, kptij in enumerate(kptij_lst): h5dat = feri['%s/%d' % (dataname, k)] v = lib.transpose(mat[k], out=buf1) if not j_only and aosym_s2[k]: idy = idxb[i0 * (i0 + 1) // 2:i1 * (i1 + 1) // 2] - i0 * nao out = numpy.ndarray((nrow, dii), dtype=v.dtype, buffer=mat[k]) v = numpy.take(v, idy, axis=1, out=out) if gamma_point(kptij): h5dat[naux0:naux0 + nrow] = v.real else: h5dat[naux0:naux0 + nrow] = v naux0 += nrow def ft_fuse(job_id, uniq_kptji_id, sh0, sh1): kpt = uniq_kpts[uniq_kptji_id] # kpt = kptj - kpti adapted_ji_idx = numpy.where(uniq_inverse == uniq_kptji_id)[0] adapted_kptjs = kptjs[adapted_ji_idx] nkptj = len(adapted_kptjs) shls_slice = (auxcell.nbas, fused_cell.nbas) Gaux = ft_ao.ft_ao(fused_cell, Gv, shls_slice, b, gxyz, Gvbase, kpt) Gaux *= mydf.weighted_coulG(kpt, False, gs).reshape(-1, 1) kLR = Gaux.real.copy('C') kLI = Gaux.imag.copy('C') j2c = numpy.asarray(feri['j2c/%d' % uniq_kptji_id]) j2ctag = j2ctags[uniq_kptji_id] naux0 = j2c.shape[0] if is_zero(kpt): aosym = 's2' else: aosym = 's1' j3cR = [None] * nkptj j3cI = [None] * nkptj i0 = ao_loc[sh0] i1 = ao_loc[sh1] for k, idx in enumerate(adapted_ji_idx): key = 'j3c-chunks/%d/%d' % (job_id, idx) v = numpy.asarray(feri[key]) if is_zero(kpt): for i, c in enumerate(vbar): if c != 0: v[i] -= c * ovlp[k][i0 * (i0 + 1) // 2:i1 * (i1 + 1) // 2].ravel() j3cR[k] = numpy.asarray(v.real, order='C') if v.dtype == numpy.complex128: j3cI[k] = numpy.asarray(v.imag, order='C') v = None ncol = j3cR[0].shape[1] Gblksize = max(16, int(max_memory * 1e6 / 16 / ncol / (nkptj + 1))) # +1 for pqkRbuf/pqkIbuf Gblksize = min(Gblksize, ngs, 16384) pqkRbuf = numpy.empty(ncol * Gblksize) pqkIbuf = numpy.empty(ncol * Gblksize) buf = numpy.empty(nkptj * ncol * Gblksize, dtype=numpy.complex128) log.alldebug2(' blksize (%d,%d)', Gblksize, ncol) shls_slice = (sh0, sh1, 0, cell.nbas) for p0, p1 in lib.prange(0, ngs, Gblksize): dat = ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, kpt, adapted_kptjs, out=buf) nG = p1 - p0 for k, ji in enumerate(adapted_ji_idx): aoao = dat[k].reshape(nG, ncol) pqkR = numpy.ndarray((ncol, nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ncol, nG), buffer=pqkIbuf) pqkR[:] = aoao.real.T pqkI[:] = aoao.imag.T lib.dot(kLR[p0:p1].T, pqkR.T, -1, j3cR[k][naux:], 1) lib.dot(kLI[p0:p1].T, pqkI.T, -1, j3cR[k][naux:], 1) if not (is_zero(kpt) and gamma_point(adapted_kptjs[k])): lib.dot(kLR[p0:p1].T, pqkI.T, -1, j3cI[k][naux:], 1) lib.dot(kLI[p0:p1].T, pqkR.T, 1, j3cI[k][naux:], 1) for k, idx in enumerate(adapted_ji_idx): if is_zero(kpt) and gamma_point(adapted_kptjs[k]): v = fuse(j3cR[k]) else: v = fuse(j3cR[k] + j3cI[k] * 1j) if j2ctag == 'CD': v = scipy.linalg.solve_triangular(j2c, v, lower=True, overwrite_b=True) else: v = lib.dot(j2c, v) feri['j3c-chunks/%d/%d' % (job_id, idx)][:naux0] = v t2 = t1 j3c_workers = numpy.zeros(len(j3c_jobs), dtype=int) #for job_id, ish0, ish1 in mpi.work_share_partition(j3c_jobs): for job_id, ish0, ish1 in mpi.work_stealing_partition(j3c_jobs): gen_int3c(fused_cell, job_id, ish0, ish1) t2 = log.alltimer_debug2('int j3c %d' % job_id, *t2) for k, kpt in enumerate(uniq_kpts): ft_fuse(job_id, k, ish0, ish1) t2 = log.alltimer_debug2('ft-fuse %d k %d' % (job_id, k), *t2) j3c_workers[job_id] = rank j3c_workers = mpi.allreduce(j3c_workers) log.debug2('j3c_workers %s', j3c_workers) j2c = kLRs = kLIs = ovlp = vbar = fuse = gen_int3c = ft_fuse = None t1 = log.timer_debug1('int3c and fuse', *t1) def get_segs_loc(aosym): off0 = numpy.asarray([ao_loc[i0] for x, i0, i1 in j3c_jobs]) off1 = numpy.asarray([ao_loc[i1] for x, i0, i1 in j3c_jobs]) if aosym: # s2 dims = off1 * (off1 + 1) // 2 - off0 * (off0 + 1) // 2 else: dims = (off1 - off0) * nao #dims = numpy.asarray([ao_loc[i1]-ao_loc[i0] for x,i0,i1 in j3c_jobs]) dims = numpy.hstack( [dims[j3c_workers == w] for w in range(mpi.pool.size)]) job_idx = numpy.hstack( [numpy.where(j3c_workers == w)[0] for w in range(mpi.pool.size)]) segs_loc = numpy.append(0, numpy.cumsum(dims)) segs_loc = [(segs_loc[j], segs_loc[j + 1]) for j in numpy.argsort(job_idx)] return segs_loc segs_loc_s1 = get_segs_loc(False) segs_loc_s2 = get_segs_loc(True) if 'j3c' in feri: del (feri['j3c']) segsize = (max(nauxs) + mpi.pool.size - 1) // mpi.pool.size naux0 = rank * segsize for k, kptij in enumerate(kptij_lst): naux1 = min(nauxs[uniq_inverse[k]], naux0 + segsize) nrow = max(0, naux1 - naux0) if gamma_point(kptij): dtype = 'f8' else: dtype = 'c16' if aosym_s2[k]: nao_pair = nao * (nao + 1) // 2 else: nao_pair = nao * nao feri.create_dataset('j3c/%d' % k, (nrow, nao_pair), dtype, maxshape=(None, nao_pair)) def load(k, p0, p1): naux1 = nauxs[uniq_inverse[k]] slices = [(min(i * segsize + p0, naux1), min(i * segsize + p1, naux1)) for i in range(mpi.pool.size)] segs = [] for p0, p1 in slices: val = [] for job_id, worker in enumerate(j3c_workers): if rank == worker: key = 'j3c-chunks/%d/%d' % (job_id, k) val.append(feri[key][p0:p1].ravel()) if val: segs.append(numpy.hstack(val)) else: segs.append(numpy.zeros(0)) return segs def save(k, p0, p1, segs): segs = mpi.alltoall(segs) naux1 = nauxs[uniq_inverse[k]] loc0, loc1 = min(p0, naux1 - naux0), min(p1, naux1 - naux0) nL = loc1 - loc0 if nL > 0: if aosym_s2[k]: segs = numpy.hstack([ segs[i0 * nL:i1 * nL].reshape(nL, -1) for i0, i1 in segs_loc_s2 ]) else: segs = numpy.hstack([ segs[i0 * nL:i1 * nL].reshape(nL, -1) for i0, i1 in segs_loc_s1 ]) feri['j3c/%d' % k][loc0:loc1] = segs mem_now = max(comm.allgather(lib.current_memory()[0])) max_memory = max(2000, min(8000, mydf.max_memory - mem_now)) if numpy.all(aosym_s2): if gamma_point(kptij_lst): blksize = max(16, int(max_memory * .5e6 / 8 / nao**2)) else: blksize = max(16, int(max_memory * .5e6 / 16 / nao**2)) else: blksize = max(16, int(max_memory * .5e6 / 16 / nao**2 / 2)) log.debug1('max_momory %d MB (%d in use), blksize %d', max_memory, mem_now, blksize) t2 = t1 with lib.call_in_background(save) as async_write: for k, kptji in enumerate(kptij_lst): for p0, p1 in lib.prange(0, segsize, blksize): segs = load(k, p0, p1) async_write(k, p0, p1, segs) t2 = log.timer_debug1( 'assemble k=%d %d:%d (in %d)' % (k, p0, p1, segsize), *t2) if 'j3c-chunks' in feri: del (feri['j3c-chunks']) if 'j3c-kptij' in feri: del (feri['j3c-kptij']) feri['j3c-kptij'] = kptij_lst t1 = log.alltimer_debug1('assembling j3c', *t1) feri.close()
def ft_fuse(job_id, uniq_kptji_id, sh0, sh1): kpt = uniq_kpts[uniq_kptji_id] # kpt = kptj - kpti adapted_ji_idx = numpy.where(uniq_inverse == uniq_kptji_id)[0] adapted_kptjs = kptjs[adapted_ji_idx] nkptj = len(adapted_kptjs) Gaux = ft_ao.ft_ao(fused_cell, Gv, None, b, gxyz, Gvbase, kpt).T Gaux = fuse(Gaux) Gaux *= mydf.weighted_coulG(kpt, False, mesh) kLR = lib.transpose(numpy.asarray(Gaux.real, order='C')) kLI = lib.transpose(numpy.asarray(Gaux.imag, order='C')) j2c = numpy.asarray(fswap['j2c/%d'%uniq_kptji_id]) j2ctag = j2ctags[uniq_kptji_id] naux0 = j2c.shape[0] if ('j2c-/%d' % uniq_kptji_id) in fswap: j2c_negative = numpy.asarray(fswap['j2c-/%d'%uniq_kptji_id]) else: j2c_negative = None if is_zero(kpt): aosym = 's2' else: aosym = 's1' if aosym == 's2' and cell.dimension == 3: vbar = fuse(mydf.auxbar(fused_cell)) ovlp = cell.pbc_intor('int1e_ovlp', hermi=1, kpts=adapted_kptjs) ovlp = [lib.pack_tril(s) for s in ovlp] j3cR = [None] * nkptj j3cI = [None] * nkptj i0 = ao_loc[sh0] i1 = ao_loc[sh1] for k, idx in enumerate(adapted_ji_idx): key = 'j3c-chunks/%d/%d' % (job_id, idx) v = fuse(numpy.asarray(fswap[key])) if aosym == 's2' and cell.dimension == 3: for i in numpy.where(vbar != 0)[0]: v[i] -= vbar[i] * ovlp[k][i0*(i0+1)//2:i1*(i1+1)//2].ravel() j3cR[k] = numpy.asarray(v.real, order='C') if v.dtype == numpy.complex128: j3cI[k] = numpy.asarray(v.imag, order='C') v = None ncol = j3cR[0].shape[1] Gblksize = max(16, int(max_memory*1e6/16/ncol/(nkptj+1))) # +1 for pqkRbuf/pqkIbuf Gblksize = min(Gblksize, ngrids, 16384) pqkRbuf = numpy.empty(ncol*Gblksize) pqkIbuf = numpy.empty(ncol*Gblksize) buf = numpy.empty(nkptj*ncol*Gblksize, dtype=numpy.complex128) log.alldebug2(' blksize (%d,%d)', Gblksize, ncol) if aosym == 's2': shls_slice = (sh0, sh1, 0, sh1) else: shls_slice = (sh0, sh1, 0, cell.nbas) for p0, p1 in lib.prange(0, ngrids, Gblksize): dat = ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, kpt, adapted_kptjs, out=buf) nG = p1 - p0 for k, ji in enumerate(adapted_ji_idx): aoao = dat[k].reshape(nG,ncol) pqkR = numpy.ndarray((ncol,nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ncol,nG), buffer=pqkIbuf) pqkR[:] = aoao.real.T pqkI[:] = aoao.imag.T lib.dot(kLR[p0:p1].T, pqkR.T, -1, j3cR[k], 1) lib.dot(kLI[p0:p1].T, pqkI.T, -1, j3cR[k], 1) if not (is_zero(kpt) and gamma_point(adapted_kptjs[k])): lib.dot(kLR[p0:p1].T, pqkI.T, -1, j3cI[k], 1) lib.dot(kLI[p0:p1].T, pqkR.T, 1, j3cI[k], 1) for k, idx in enumerate(adapted_ji_idx): if is_zero(kpt) and gamma_point(adapted_kptjs[k]): v = j3cR[k] else: v = j3cR[k] + j3cI[k] * 1j if j2ctag == 'CD': v = scipy.linalg.solve_triangular(j2c, v, lower=True, overwrite_b=True) fswap['j3c-chunks/%d/%d'%(job_id,idx)][:naux0] = v else: fswap['j3c-chunks/%d/%d'%(job_id,idx)][:naux0] = lib.dot(j2c, v) # low-dimension systems if j2c_negative is not None: fswap['j3c-/%d/%d'%(job_id,idx)] = lib.dot(j2c_negative, v)
def _make_j3c(mydf, cell, auxcell, kptij_lst, cderi_file): log = logger.Logger(mydf.stdout, mydf.verbose) t1 = t0 = (time.clock(), time.time()) fused_cell, fuse = fuse_auxcell(mydf, mydf.auxcell) ao_loc = cell.ao_loc_nr() nao = ao_loc[-1] naux = auxcell.nao_nr() nkptij = len(kptij_lst) mesh = mydf.mesh Gv, Gvbase, kws = cell.get_Gv_weights(mesh) b = cell.reciprocal_vectors() gxyz = lib.cartesian_prod([numpy.arange(len(x)) for x in Gvbase]) ngrids = gxyz.shape[0] kptis = kptij_lst[:, 0] kptjs = kptij_lst[:, 1] kpt_ji = kptjs - kptis uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji) log.debug('Num uniq kpts %d', len(uniq_kpts)) log.debug2('uniq_kpts %s', uniq_kpts) # j2c ~ (-kpt_ji | kpt_ji) j2c = fused_cell.pbc_intor('int2c2e', hermi=1, kpts=uniq_kpts) j2ctags = [] t1 = log.timer_debug1('2c2e', *t1) swapfile = tempfile.NamedTemporaryFile(dir=os.path.dirname(cderi_file)) fswap = lib.H5TmpFile(swapfile.name) # Unlink swapfile to avoid trash swapfile = None mem_now = max(comm.allgather(lib.current_memory()[0])) max_memory = max(2000, mydf.max_memory - mem_now) blksize = max(2048, int(max_memory * .5e6 / 16 / fused_cell.nao_nr())) log.debug2('max_memory %s (MB) blocksize %s', max_memory, blksize) for k, kpt in enumerate(uniq_kpts): coulG = mydf.weighted_coulG(kpt, False, mesh) j2c_k = numpy.zeros_like(j2c[k]) for p0, p1 in mydf.prange(0, ngrids, blksize): aoaux = ft_ao.ft_ao(fused_cell, Gv[p0:p1], None, b, gxyz[p0:p1], Gvbase, kpt).T LkR = numpy.asarray(aoaux.real, order='C') LkI = numpy.asarray(aoaux.imag, order='C') aoaux = None if is_zero(kpt): # kpti == kptj j2c_k[naux:] += lib.ddot(LkR[naux:] * coulG[p0:p1], LkR.T) j2c_k[naux:] += lib.ddot(LkI[naux:] * coulG[p0:p1], LkI.T) else: j2cR, j2cI = zdotCN(LkR[naux:] * coulG[p0:p1], LkI[naux:] * coulG[p0:p1], LkR.T, LkI.T) j2c_k[naux:] += j2cR + j2cI * 1j kLR = kLI = None j2c_k[:naux, naux:] = j2c_k[naux:, :naux].conj().T j2c[k] -= mpi.allreduce(j2c_k) j2c[k] = fuse(fuse(j2c[k]).T).T try: fswap['j2c/%d' % k] = scipy.linalg.cholesky(j2c[k], lower=True) j2ctags.append('CD') except scipy.linalg.LinAlgError as e: #msg =('===================================\n' # 'J-metric not positive definite.\n' # 'It is likely that mesh is not enough.\n' # '===================================') #log.error(msg) #raise scipy.linalg.LinAlgError('\n'.join([str(e), msg])) w, v = scipy.linalg.eigh(j2c[k]) log.debug2('metric linear dependency for kpt %s', k) log.debug2('cond = %.4g, drop %d bfns', w[0] / w[-1], numpy.count_nonzero(w < mydf.linear_dep_threshold)) v1 = v[:, w > mydf.linear_dep_threshold].T.conj() v1 /= numpy.sqrt(w[w > mydf.linear_dep_threshold]).reshape(-1, 1) fswap['j2c/%d' % k] = v1 if cell.dimension == 2 and cell.low_dim_ft_type != 'inf_vacuum': idx = numpy.where(w < -mydf.linear_dep_threshold)[0] if len(idx) > 0: fswap['j2c-/%d' % k] = (v[:, idx] / numpy.sqrt(-w[idx])).conj().T w = v = v1 = None j2ctags.append('eig') j2c = coulG = None aosym_s2 = numpy.einsum('ix->i', abs(kptis - kptjs)) < 1e-9 j_only = numpy.all(aosym_s2) if gamma_point(kptij_lst): dtype = 'f8' else: dtype = 'c16' t1 = log.timer_debug1('aoaux and int2c', *t1) # Estimates the buffer size based on the last contraction in G-space. # This contraction requires to hold nkptj copies of (naux,?) array # simultaneously in memory. mem_now = max(comm.allgather(lib.current_memory()[0])) max_memory = max(2000, mydf.max_memory - mem_now) nkptj_max = max((uniq_inverse == x).sum() for x in set(uniq_inverse)) buflen = max( int( min(max_memory * .5e6 / 16 / naux / (nkptj_max + 2) / nao, nao / 3 / mpi.pool.size)), 1) chunks = (buflen, nao) j3c_jobs = grids2d_int3c_jobs(cell, auxcell, kptij_lst, chunks, j_only) log.debug1('max_memory = %d MB (%d in use) chunks %s', max_memory, mem_now, chunks) log.debug2('j3c_jobs %s', j3c_jobs) if j_only: int3c = wrap_int3c(cell, fused_cell, 'int3c2e', 's2', 1, kptij_lst) else: int3c = wrap_int3c(cell, fused_cell, 'int3c2e', 's1', 1, kptij_lst) idxb = numpy.tril_indices(nao) idxb = (idxb[0] * nao + idxb[1]).astype('i') aux_loc = fused_cell.ao_loc_nr('ssc' in 'int3c2e') def gen_int3c(job_id, ish0, ish1): dataname = 'j3c-chunks/%d' % job_id i0 = ao_loc[ish0] i1 = ao_loc[ish1] dii = i1 * (i1 + 1) // 2 - i0 * (i0 + 1) // 2 if j_only: dij = dii buflen = max(8, int(max_memory * 1e6 / 16 / (nkptij * dii + dii))) else: dij = (i1 - i0) * nao buflen = max(8, int(max_memory * 1e6 / 16 / (nkptij * dij + dij))) auxranges = balance_segs(aux_loc[1:] - aux_loc[:-1], buflen) buflen = max([x[2] for x in auxranges]) buf = numpy.empty(nkptij * dij * buflen, dtype=dtype) buf1 = numpy.empty(dij * buflen, dtype=dtype) naux = aux_loc[-1] for kpt_id, kptij in enumerate(kptij_lst): key = '%s/%d' % (dataname, kpt_id) if aosym_s2[kpt_id]: shape = (naux, dii) else: shape = (naux, dij) if gamma_point(kptij): fswap.create_dataset(key, shape, 'f8') else: fswap.create_dataset(key, shape, 'c16') naux0 = 0 for istep, auxrange in enumerate(auxranges): log.alldebug2("aux_e1 job_id %d step %d", job_id, istep) sh0, sh1, nrow = auxrange sub_slice = (ish0, ish1, 0, cell.nbas, sh0, sh1) mat = numpy.ndarray((nkptij, dij, nrow), dtype=dtype, buffer=buf) mat = int3c(sub_slice, mat) for k, kptij in enumerate(kptij_lst): h5dat = fswap['%s/%d' % (dataname, k)] v = lib.transpose(mat[k], out=buf1) if not j_only and aosym_s2[k]: idy = idxb[i0 * (i0 + 1) // 2:i1 * (i1 + 1) // 2] - i0 * nao out = numpy.ndarray((nrow, dii), dtype=v.dtype, buffer=mat[k]) v = numpy.take(v, idy, axis=1, out=out) if gamma_point(kptij): h5dat[naux0:naux0 + nrow] = v.real else: h5dat[naux0:naux0 + nrow] = v naux0 += nrow def ft_fuse(job_id, uniq_kptji_id, sh0, sh1): kpt = uniq_kpts[uniq_kptji_id] # kpt = kptj - kpti adapted_ji_idx = numpy.where(uniq_inverse == uniq_kptji_id)[0] adapted_kptjs = kptjs[adapted_ji_idx] nkptj = len(adapted_kptjs) j2c = numpy.asarray(fswap['j2c/%d' % uniq_kptji_id]) j2ctag = j2ctags[uniq_kptji_id] naux0 = j2c.shape[0] if ('j2c-/%d' % uniq_kptji_id) in fswap: j2c_negative = numpy.asarray(fswap['j2c-/%d' % uniq_kptji_id]) else: j2c_negative = None if is_zero(kpt): aosym = 's2' else: aosym = 's1' if aosym == 's2' and cell.dimension == 3: vbar = fuse(mydf.auxbar(fused_cell)) ovlp = cell.pbc_intor('int1e_ovlp', hermi=1, kpts=adapted_kptjs) ovlp = [lib.pack_tril(s) for s in ovlp] j3cR = [None] * nkptj j3cI = [None] * nkptj i0 = ao_loc[sh0] i1 = ao_loc[sh1] for k, idx in enumerate(adapted_ji_idx): key = 'j3c-chunks/%d/%d' % (job_id, idx) v = numpy.asarray(fswap[key]) if aosym == 's2' and cell.dimension == 3: for i in numpy.where(vbar != 0)[0]: v[i] -= vbar[i] * ovlp[k][i0 * (i0 + 1) // 2:i1 * (i1 + 1) // 2].ravel() j3cR[k] = numpy.asarray(v.real, order='C') if v.dtype == numpy.complex128: j3cI[k] = numpy.asarray(v.imag, order='C') v = None ncol = j3cR[0].shape[1] Gblksize = max(16, int(max_memory * 1e6 / 16 / ncol / (nkptj + 1))) # +1 for pqkRbuf/pqkIbuf Gblksize = min(Gblksize, ngrids, 16384) pqkRbuf = numpy.empty(ncol * Gblksize) pqkIbuf = numpy.empty(ncol * Gblksize) buf = numpy.empty(nkptj * ncol * Gblksize, dtype=numpy.complex128) log.alldebug2('job_id %d blksize (%d,%d)', job_id, Gblksize, ncol) wcoulG = mydf.weighted_coulG(kpt, False, mesh) fused_cell_slice = (auxcell.nbas, fused_cell.nbas) if aosym == 's2': shls_slice = (sh0, sh1, 0, sh1) else: shls_slice = (sh0, sh1, 0, cell.nbas) for p0, p1 in lib.prange(0, ngrids, Gblksize): Gaux = ft_ao.ft_ao(fused_cell, Gv[p0:p1], fused_cell_slice, b, gxyz[p0:p1], Gvbase, kpt) Gaux *= wcoulG[p0:p1, None] kLR = Gaux.real.copy('C') kLI = Gaux.imag.copy('C') Gaux = None dat = ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, kpt, adapted_kptjs, out=buf) nG = p1 - p0 for k, ji in enumerate(adapted_ji_idx): aoao = dat[k].reshape(nG, ncol) pqkR = numpy.ndarray((ncol, nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ncol, nG), buffer=pqkIbuf) pqkR[:] = aoao.real.T pqkI[:] = aoao.imag.T lib.dot(kLR.T, pqkR.T, -1, j3cR[k][naux:], 1) lib.dot(kLI.T, pqkI.T, -1, j3cR[k][naux:], 1) if not (is_zero(kpt) and gamma_point(adapted_kptjs[k])): lib.dot(kLR.T, pqkI.T, -1, j3cI[k][naux:], 1) lib.dot(kLI.T, pqkR.T, 1, j3cI[k][naux:], 1) kLR = kLI = None for k, idx in enumerate(adapted_ji_idx): if is_zero(kpt) and gamma_point(adapted_kptjs[k]): v = fuse(j3cR[k]) else: v = fuse(j3cR[k] + j3cI[k] * 1j) if j2ctag == 'CD': v = scipy.linalg.solve_triangular(j2c, v, lower=True, overwrite_b=True) fswap['j3c-chunks/%d/%d' % (job_id, idx)][:naux0] = v else: fswap['j3c-chunks/%d/%d' % (job_id, idx)][:naux0] = lib.dot( j2c, v) # low-dimension systems if j2c_negative is not None: fswap['j3c-/%d/%d' % (job_id, idx)] = lib.dot(j2c_negative, v) _assemble(mydf, kptij_lst, j3c_jobs, gen_int3c, ft_fuse, cderi_file, fswap, log)
def _make_j3c(mydf, cell, auxcell, kptij_lst, cderi_file): log = logger.Logger(mydf.stdout, mydf.verbose) t1 = t0 = (time.clock(), time.time()) fused_cell, fuse = fuse_auxcell(mydf, mydf.auxcell) ao_loc = cell.ao_loc_nr() nao = ao_loc[-1] naux = auxcell.nao_nr() nkptij = len(kptij_lst) mesh = mydf.mesh Gv, Gvbase, kws = cell.get_Gv_weights(mesh) b = cell.reciprocal_vectors() gxyz = lib.cartesian_prod([numpy.arange(len(x)) for x in Gvbase]) ngrids = gxyz.shape[0] kptis = kptij_lst[:,0] kptjs = kptij_lst[:,1] kpt_ji = kptjs - kptis uniq_kpts, uniq_index, uniq_inverse = unique(kpt_ji) log.debug('Num uniq kpts %d', len(uniq_kpts)) log.debug2('uniq_kpts %s', uniq_kpts) # j2c ~ (-kpt_ji | kpt_ji) j2c = fused_cell.pbc_intor('int2c2e', hermi=1, kpts=uniq_kpts) j2ctags = [] t1 = log.timer_debug1('2c2e', *t1) swapfile = tempfile.NamedTemporaryFile(dir=os.path.dirname(cderi_file)) fswap = lib.H5TmpFile(swapfile.name) # Unlink swapfile to avoid trash swapfile = None for k, kpt in enumerate(uniq_kpts): coulG = mydf.weighted_coulG(kpt, False, mesh) j2c[k] = fuse(fuse(j2c[k]).T).T.copy() j2c_k = numpy.zeros_like(j2c[k]) for p0, p1 in mydf.mpi_prange(0, ngrids): aoaux = ft_ao.ft_ao(fused_cell, Gv[p0:p1], None, b, gxyz[p0:p1], Gvbase, kpt).T aoaux = fuse(aoaux) LkR = numpy.asarray(aoaux.real, order='C') LkI = numpy.asarray(aoaux.imag, order='C') aoaux = None if is_zero(kpt): # kpti == kptj j2cR = lib.dot(LkR*coulG[p0:p1], LkR.T) j2c_k += lib.dot(LkI*coulG[p0:p1], LkI.T, 1, j2cR, 1) else: # aoaux ~ kpt_ij, aoaux.conj() ~ kpt_kl j2cR, j2cI = zdotCN(LkR*coulG[p0:p1], LkI*coulG[p0:p1], LkR.T, LkI.T) j2c_k += j2cR + j2cI * 1j LkR = LkI = None j2c[k] -= mpi.allreduce(j2c_k) try: fswap['j2c/%d'%k] = scipy.linalg.cholesky(j2c[k], lower=True) j2ctags.append('CD') except scipy.linalg.LinAlgError: w, v = scipy.linalg.eigh(j2c[k]) log.debug2('metric linear dependency for kpt %s', k) log.debug2('cond = %.4g, drop %d bfns', w[0]/w[-1], numpy.count_nonzero(w<mydf.linear_dep_threshold)) v1 = v[:,w>mydf.linear_dep_threshold].T.conj() v1 /= numpy.sqrt(w[w>mydf.linear_dep_threshold]).reshape(-1,1) fswap['j2c/%d'%k] = v1 if cell.dimension == 2 and cell.low_dim_ft_type != 'inf_vacuum': idx = numpy.where(w < -mydf.linear_dep_threshold)[0] if len(idx) > 0: fswap['j2c-/%d'%k] = (v[:,idx]/numpy.sqrt(-w[idx])).conj().T w = v = v1 = v2 = None j2ctags.append('eig') aoaux = kLR = kLI = j2cR = j2cI = coulG = None j2c = None aosym_s2 = numpy.einsum('ix->i', abs(kptis-kptjs)) < 1e-9 j_only = numpy.all(aosym_s2) if gamma_point(kptij_lst): dtype = 'f8' else: dtype = 'c16' t1 = log.timer_debug1('aoaux and int2c', *t1) # Estimates the buffer size based on the last contraction in G-space. # This contraction requires to hold nkptj copies of (naux,?) array # simultaneously in memory. mem_now = max(comm.allgather(lib.current_memory()[0])) max_memory = max(2000, mydf.max_memory - mem_now) nkptj_max = max((uniq_inverse==x).sum() for x in set(uniq_inverse)) buflen = max(int(min(max_memory*.5e6/16/naux/(nkptj_max+2)/nao, nao/3/mpi.pool.size)), 1) chunks = (buflen, nao) j3c_jobs = mpi_df.grids2d_int3c_jobs(cell, auxcell, kptij_lst, chunks, j_only) log.debug1('max_memory = %d MB (%d in use) chunks %s', max_memory, mem_now, chunks) log.debug2('j3c_jobs %s', j3c_jobs) if j_only: int3c = wrap_int3c(cell, fused_cell, 'int3c2e', 's2', 1, kptij_lst) else: int3c = wrap_int3c(cell, fused_cell, 'int3c2e', 's1', 1, kptij_lst) idxb = numpy.tril_indices(nao) idxb = (idxb[0] * nao + idxb[1]).astype('i') aux_loc = fused_cell.ao_loc_nr(fused_cell.cart) def gen_int3c(job_id, ish0, ish1): dataname = 'j3c-chunks/%d' % job_id i0 = ao_loc[ish0] i1 = ao_loc[ish1] dii = i1*(i1+1)//2 - i0*(i0+1)//2 dij = (i1 - i0) * nao if j_only: buflen = max(8, int(max_memory*1e6/16/(nkptij*dii+dii))) else: buflen = max(8, int(max_memory*1e6/16/(nkptij*dij+dij))) auxranges = balance_segs(aux_loc[1:]-aux_loc[:-1], buflen) buflen = max([x[2] for x in auxranges]) buf = numpy.empty(nkptij*dij*buflen, dtype=dtype) buf1 = numpy.empty(dij*buflen, dtype=dtype) naux = aux_loc[-1] for kpt_id, kptij in enumerate(kptij_lst): key = '%s/%d' % (dataname, kpt_id) if aosym_s2[kpt_id]: shape = (naux, dii) else: shape = (naux, dij) if gamma_point(kptij): fswap.create_dataset(key, shape, 'f8') else: fswap.create_dataset(key, shape, 'c16') naux0 = 0 for istep, auxrange in enumerate(auxranges): log.alldebug2("aux_e1 job_id %d step %d", job_id, istep) sh0, sh1, nrow = auxrange sub_slice = (ish0, ish1, 0, cell.nbas, sh0, sh1) if j_only: mat = numpy.ndarray((nkptij,dii,nrow), dtype=dtype, buffer=buf) else: mat = numpy.ndarray((nkptij,dij,nrow), dtype=dtype, buffer=buf) mat = int3c(sub_slice, mat) for k, kptij in enumerate(kptij_lst): h5dat = fswap['%s/%d'%(dataname,k)] v = lib.transpose(mat[k], out=buf1) if not j_only and aosym_s2[k]: idy = idxb[i0*(i0+1)//2:i1*(i1+1)//2] - i0 * nao out = numpy.ndarray((nrow,dii), dtype=v.dtype, buffer=mat[k]) v = numpy.take(v, idy, axis=1, out=out) if gamma_point(kptij): h5dat[naux0:naux0+nrow] = v.real else: h5dat[naux0:naux0+nrow] = v naux0 += nrow def ft_fuse(job_id, uniq_kptji_id, sh0, sh1): kpt = uniq_kpts[uniq_kptji_id] # kpt = kptj - kpti adapted_ji_idx = numpy.where(uniq_inverse == uniq_kptji_id)[0] adapted_kptjs = kptjs[adapted_ji_idx] nkptj = len(adapted_kptjs) Gaux = ft_ao.ft_ao(fused_cell, Gv, None, b, gxyz, Gvbase, kpt).T Gaux = fuse(Gaux) Gaux *= mydf.weighted_coulG(kpt, False, mesh) kLR = lib.transpose(numpy.asarray(Gaux.real, order='C')) kLI = lib.transpose(numpy.asarray(Gaux.imag, order='C')) j2c = numpy.asarray(fswap['j2c/%d'%uniq_kptji_id]) j2ctag = j2ctags[uniq_kptji_id] naux0 = j2c.shape[0] if ('j2c-/%d' % uniq_kptji_id) in fswap: j2c_negative = numpy.asarray(fswap['j2c-/%d'%uniq_kptji_id]) else: j2c_negative = None if is_zero(kpt): aosym = 's2' else: aosym = 's1' if aosym == 's2' and cell.dimension == 3: vbar = fuse(mydf.auxbar(fused_cell)) ovlp = cell.pbc_intor('int1e_ovlp', hermi=1, kpts=adapted_kptjs) ovlp = [lib.pack_tril(s) for s in ovlp] j3cR = [None] * nkptj j3cI = [None] * nkptj i0 = ao_loc[sh0] i1 = ao_loc[sh1] for k, idx in enumerate(adapted_ji_idx): key = 'j3c-chunks/%d/%d' % (job_id, idx) v = fuse(numpy.asarray(fswap[key])) if aosym == 's2' and cell.dimension == 3: for i in numpy.where(vbar != 0)[0]: v[i] -= vbar[i] * ovlp[k][i0*(i0+1)//2:i1*(i1+1)//2].ravel() j3cR[k] = numpy.asarray(v.real, order='C') if v.dtype == numpy.complex128: j3cI[k] = numpy.asarray(v.imag, order='C') v = None ncol = j3cR[0].shape[1] Gblksize = max(16, int(max_memory*1e6/16/ncol/(nkptj+1))) # +1 for pqkRbuf/pqkIbuf Gblksize = min(Gblksize, ngrids, 16384) pqkRbuf = numpy.empty(ncol*Gblksize) pqkIbuf = numpy.empty(ncol*Gblksize) buf = numpy.empty(nkptj*ncol*Gblksize, dtype=numpy.complex128) log.alldebug2(' blksize (%d,%d)', Gblksize, ncol) if aosym == 's2': shls_slice = (sh0, sh1, 0, sh1) else: shls_slice = (sh0, sh1, 0, cell.nbas) for p0, p1 in lib.prange(0, ngrids, Gblksize): dat = ft_ao._ft_aopair_kpts(cell, Gv[p0:p1], shls_slice, aosym, b, gxyz[p0:p1], Gvbase, kpt, adapted_kptjs, out=buf) nG = p1 - p0 for k, ji in enumerate(adapted_ji_idx): aoao = dat[k].reshape(nG,ncol) pqkR = numpy.ndarray((ncol,nG), buffer=pqkRbuf) pqkI = numpy.ndarray((ncol,nG), buffer=pqkIbuf) pqkR[:] = aoao.real.T pqkI[:] = aoao.imag.T lib.dot(kLR[p0:p1].T, pqkR.T, -1, j3cR[k], 1) lib.dot(kLI[p0:p1].T, pqkI.T, -1, j3cR[k], 1) if not (is_zero(kpt) and gamma_point(adapted_kptjs[k])): lib.dot(kLR[p0:p1].T, pqkI.T, -1, j3cI[k], 1) lib.dot(kLI[p0:p1].T, pqkR.T, 1, j3cI[k], 1) for k, idx in enumerate(adapted_ji_idx): if is_zero(kpt) and gamma_point(adapted_kptjs[k]): v = j3cR[k] else: v = j3cR[k] + j3cI[k] * 1j if j2ctag == 'CD': v = scipy.linalg.solve_triangular(j2c, v, lower=True, overwrite_b=True) fswap['j3c-chunks/%d/%d'%(job_id,idx)][:naux0] = v else: fswap['j3c-chunks/%d/%d'%(job_id,idx)][:naux0] = lib.dot(j2c, v) # low-dimension systems if j2c_negative is not None: fswap['j3c-/%d/%d'%(job_id,idx)] = lib.dot(j2c_negative, v) mpi_df._assemble(mydf, kptij_lst, j3c_jobs, gen_int3c, ft_fuse, cderi_file, fswap, log)